Abstract

Standard life cycle techniques such as life cycle warranty cost (LCWC) analysis and life cycle analysis (LCA) are used to respectively quantify the relative economical and environmental advantages of remanufactured goods while simultaneously identifying avenues for improvement. In this paper, we contribute to the literature on life cycle studies by incorporating reliability into LCWC analysis and LCA with the goal of improving long-term/multiple life cycle decision making. We develop a branched power-law model to incorporate the physical degradation mechanisms leading to reduced reuse rates of system parts over multiple life cycles. We then follow a standard LCA protocol to quantify the difference between a new unit and its remanufactured version in terms of environmental impact items such as abiotic depletion potential, global warming potential, and energy consumption. We then devise four practical warranty policies that vary in the choice of replacement and/or provision for extended warranty. All possible replacement scenarios for multiple life cycles are explored for each policy and a mathematically rigorous framework is provided, where the reliability information is used to calculate probabilistic LCWC and life cycle impact items. This reliability-informed LCWC analysis and LCA framework enables design engineers to compare design options and warranty policies by quantifying both economical and environmental impacts to aid in decision making. Although the framework is presented in a general form applicable to any engineered system, we demonstrate the utility of this framework by using a case study of an infinitely variable transmission used in agricultural equipment.

References

1.
Schau
,
E. M.
,
Traverso
,
M.
, and
Finkbeiner
,
M.
,
2012
, “
Life Cycle Approach to Sustainability Assessment: A Case Study of Remanufactured Alternators
,”
J. Remanufact.
,
2
(
1
), pp.
1
14
.
2.
El Dehaibi
,
N.
,
Goodman
,
N. D.
, and
MacDonald
,
E. F.
,
2019
, “
Extracting Customer Perceptions of Product Sustainability From Online Reviews
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121103
.
3.
Rebitzer
,
G.
,
Ekvall
,
T.
,
Frischknecht
,
R.
,
Hunkeler
,
D.
,
Norris
,
G.
,
Rydberg
,
T.
,
Schmidt
,
W.-P.
,
Suh
,
S.
,
Weidema
,
B. P.
, and
Pennington
,
D. W.
,
2004
, “
Life Cycle Assessment: Part 1: Framework, Goal and Scope Definition, Inventory Analysis, and Applications
,”
Environ. Int.
,
30
(
5
), pp.
701
720
.
4.
Hoogmartens
,
R.
,
Van Passel
,
S.
,
Van Acker
,
K.
, and
Dubois
,
M.
,
2014
, “
Bridging the Gap Between LCA, LCC and CBA as Sustainability Assessment Tools
,”
Environ. Impact Assess. Rev.
,
48
, pp.
27
33
.
5.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Chandrasegaran
,
S. K.
, and
Ramani
,
K.
,
2017
, “
Visual Analytics Tools for Sustainable Lifecycle Design: Current Status, Challenges, and Future Opportunities
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111415
.
6.
Boustani
,
A.
,
Sahni
,
S.
,
Graves
,
S. C.
, and
Gutowski
,
T. G.
,
2010
, “
Appliance Remanufacturing and Life Cycle Energy and Economic Savings
,”
Proceedings of the 2010 IEEE International Symposium on Sustainable Systems and Technology
,
Arlington, VA
,
May
.
7.
Al Handawi
,
K.
,
Andersson
,
P.
,
Panarotto
,
M.
,
Isaksson
,
O.
, and
Kokkolaras
,
M.
,
2020
, “
Scalable Set-Based Design Optimization and Remanufacturing for Meeting Changing Requirements
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021702
.
8.
Hsueh
,
C.-F.
,
2011
, “
An Inventory Control Model With Consideration of Remanufacturing and Product Life Cycle
,”
Int. J. Prod. Econ.
,
133
(
2
), pp.
645
652
.
9.
Smith
,
V. M.
, and
Keoleian
,
G. A.
,
2004
, “
The Value of Remanufactured Engines: Life-Cycle Environmental and Economic Perspectives
,”
J. Ind. Ecol.
,
8
(
1–2
), pp.
193
221
.
10.
Liu
,
Z.
,
Li
,
T.
,
Jiang
,
Q.
, and
Zhang
,
H.
,
2014
, “
Life Cycle Assessment–Based Comparative Evaluation of Originally Manufactured and Remanufactured Diesel Engines
,”
J. Ind. Ecol.
,
18
(
4
), pp.
567
576
.
11.
Geyer
,
R.
,
Van Wassenhove
,
L. N.
, and
Atasu
,
A.
,
Jan. 2007
, “
The Economics of Remanufacturing Under Limited Component Durability and Finite Product Life Cycles
,”
Manag. Sci.
,
53
(
1
), pp.
88
100
.
12.
Kim
,
J.
, and
Kim
,
H.
,
2019
, “
Impact of Generational Commonality of Short-Life Cycle Products in Manufacturing and Remanufacturing Processes
,”
Proc. Des. Soc. Int. Conf. Eng. Des.
,
1
(
1
), pp.
3331
3340
.
13.
“Remanufactured Goods: An Overview of the U.S. and Global Industries, Markets, and Trade,” p.
284
.
14.
Murthy
,
D. N. P.
, and
Djamaludin
,
I.
,
2002
, “
New Product Warranty: A Literature Review
,”
Int. J. Prod. Econ.
,
79
(
3
), pp.
231
260
.
15.
Blischke
,
W.
,
1995
,
Product Warranty Handbook
,
CRC Press
,
Boca Raton, FL
.
16.
Blischke
,
W.
,
2019
,
Warranty Cost Analysis
,
CRC Press
,
Boca Raton, FL.
17.
Yu
,
S.
, and
Wang
,
Z.
,
2018
, “
A Novel Time-Variant Reliability Analysis Method Based on Failure Processes Decomposition for Dynamic Uncertain Structures
,”
ASME J. Mech. Des.
,
140
(
5
), p.
051401
.
18.
Polatoglu
,
H.
, and
Sahin
,
I.
,
1998
, “
Probability Distributions of Cost, Revenue and Profit Over a Warranty Cycle
,”
Eur. J. Oper. Res.
,
108
(
1
), pp.
170
183
.
19.
Huang
,
H.-Z.
,
Liu
,
Z.-J.
, and
Murthy
,
D. N. P.
,
2007
, “
Optimal Reliability, Warranty and Price for New Products
,”
IIE Trans.
,
39
(
8
), pp.
819
827
.
20.
Steinhilpers
,
R.
,
1998
, “
Remanufacturing—The Ultimate Form of Recycling
,” Fraunhofer IRB Verl. https://ci.nii.ac.jp/naid/10009888949/, Accessed July 1, 2020.
21.
Amezquita
,
T.
,
Hammond
,
R.
,
Salazar
,
M.
, and
Bras
,
B.
,
1995
, “
Characterizing the Remanufacturability of Engineering Systems
,”
ASME Advances in Design Automation Conference
,
Boston, MA
,
September
.
22.
Sutherland
,
J. W.
,
Adler
,
D. P.
,
Haapala
,
K. R.
, and
Kumar
,
V.
,
2008
, “
A Comparison of Manufacturing and Remanufacturing Energy Intensities With Application to Diesel Engine Production
,”
CIRP Ann.
,
57
(
1
), pp.
5
8
.
23.
Warsen
,
J.
,
Laumer
,
M.
, and
Momberg
,
W.
,
2011
, “
Comparative Life Cycle Assessment of Remanufacturing and New Manufacturing of a Manual Transmission
,”
Glocalized Solutions for Sustainability in Manufacturing
,
Berlin, Heidelberg
,
May
.
24.
Schau
,
E. M.
,
Traverso
,
M.
,
Lehmann
,
A.
, and
Finkbeiner
,
M.
,
2011
, “
Life Cycle Costing in Sustainability Assessment—A Case Study of Remanufactured Alternators
,”
Sustainability
,
3
(
11
), p.
11
.
25.
Liu
,
Z.
,
Jiang
,
Q.
,
Li
,
T.
,
Dong
,
S.
,
Yan
,
S.
,
Zhang
,
H.
, and
Xu
,
B.
,
2016
, “
Environmental Benefits of Remanufacturing: A Case Study of Cylinder Heads Remanufactured Through Laser Cladding
,”
J. Clean. Prod.
,
133
, pp.
1027
1033
.
26.
Dong
,
S.
,
Yan
,
S.
,
Xu
,
B.
,
Wang
,
Y.
, and
Ren
,
W.
,
2013
, “
Laser Cladding Remanufacturing Technology of Cast Iron Cylinder Head and Its Quality Evaluation
,”
J. Acad. Armored. Force Eng.
,
27
, pp.
90
93
.
27.
Dong
,
S.
,
Zhang
,
X.
,
Xu
,
B.
,
Wang
,
Z.
, and
Yan
,
S.
,
2011
, “
Laser Cladding Remanufacturing of 45 Steel Camshaft Worn Cam
,”
J. Acad. Armored Force Eng.
,
25
(
2
), pp.
85
87
.
28.
Xiao
,
L.
,
Liu
,
W.
,
Guo
,
Q.
,
Gao
,
L.
,
Zhang
,
G.
, and
Chen
,
X.
,
2018
, “
Comparative Life Cycle Assessment of Manufactured and Remanufactured Loading Machines in China
,”
Resour. Conserv. Recycl.
,
131
, pp.
225
234
.
29.
McKenna
,
R.
,
Reith
,
S.
,
Cail
,
S.
,
Kessler
,
A.
, and
Fichtner
,
W.
,
2013
, “
Energy Savings Through Direct Secondary Reuse: An Exemplary Analysis of the German Automotive Sector
,”
J. Clean. Prod.
,
52
, pp.
103
112
.
30.
ISO-Norm
,
I.
,
2006
, “
Environmental Management—Life Cycle Assessment—Principles and Framework ISO 14040: 2006
,”
ISO Geneva Switz.
31.
Klüppel
,
H.-J.
,
1998
, “
ISO 14041: Environmental Management–Life Cycle Assessment–Goal and Scope Definition–Inventory Analysis
,”
Int. J. Life Cycle Assess.
,
3
(
6
), p.
301
.
32.
Ryding
,
S.-O.
,
1999
, “
ISO 14042 Environmental Management* Life Cycle Assessment* Life Cycle Impact Assessment
,”
Int. J. Life Cycle Assess.
,
4
(
6
), p.
307
.
33.
Suh
,
S.
,
Lenzen
,
M.
,
Treloar
,
G. J.
,
Hondo
,
H.
,
Horvath
,
A.
,
Huppes
,
G.
,
Jolliet
,
O.
,
Klann
,
U.
,
Krewitt
,
W.
,
Moriguchi
,
Y.
,
Munksgaard
,
J.
, and
Norris
,
G.
,
2004
, “
System Boundary Selection in Life-Cycle Inventories Using Hybrid Approaches
,”
Environ. Sci. Technol.
,
38
(
3
), pp.
657
664
.
34.
Wahab
,
D. A.
,
Blanco-Davis
,
E.
,
Ariffin
,
A. K.
, and
Wang
,
J.
,
2018
, “
A Review on the Applicability of Remanufacturing in Extending the Life Cycle of Marine or Offshore Components and Structures
,”
Ocean Eng.
,
169
, pp.
125
133
.
35.
Gao
,
R. X.
, and
Wang
,
P.
,
2017
, “
Through Life Analysis for Machine Tools: From Design to Remanufacture
,”
Procedia CIRP
,
59
, pp.
2
7
.
36.
Wang
,
Z.
,
Huang
,
H.-Z.
, and
Du
,
X.
,
2009
, “
Optimal Design Accounting for Reliability, Maintenance, and Warranty
,”
ASME J. Mech. Des.
,
132
(
1
), p.
011007
.
37.
Pandey
,
M. D.
, and
van der Weide
,
J. A. M.
,
2017
, “
Stochastic Renewal Process Models for Estimation of Damage Cost Over the Life-Cycle of a Structure
,”
Struct. Saf.
,
67
, pp.
27
38
.
38.
Chen
,
H. Q.
,
Honda
,
T.
, and
Yang
,
M. C.
,
2013
, “
Approaches for Identifying Consumer Preferences for the Design of Technology Products: A Case Study of Residential Solar Panels
,”
ASME J. Mech. Des.
,
135
(
6
), p.
061007
.
39.
Alqahtani
,
A. Y.
, and
Gupta
,
S. M.
,
2017
, “
Warranty as a Marketing Strategy for Remanufactured Products
,”
J. Clean. Prod.
,
161
, pp.
1294
1307
.
40.
Chari
,
N.
,
Diallo
,
C.
, and
Venkatadri
,
U.
2013, “
Optimal Unlimited Free-Replacement Warranty Strategy using Reconditioned Products
,” /paper/Optimal-Unlimited-Free-Replacement-Warranty-using-Chari-Diallo/58437bef14d6c807522bded39fc00d6eac8ec730, Accessed July 1, 2020.
41.
Li
,
M.
,
Liu
,
J.
,
Nemani
,
V.
,
Ahmed
,
N.
,
Kremer
,
G.
, and
Hu
,
C.
,
2020
, “
Reliability-Informed Life-Cycle Warranty Cost Analysis: A Case Study on a Transmission in Agricultural Equipment
,”
Presented at the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE)
,
St. Louis, MO
,
August
, vol.
83952
, p.
V006T06A033
.
42.
Bohm
,
M. R.
,
Haapala
,
K. R.
,
Poppa
,
K.
,
Stone
,
R. B.
, and
Tumer
,
I. Y.
,
2010
, “
Integrating Life Cycle Assessment Into the Conceptual Phase of Design Using a Design Repository
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091005
.
43.
U. EPA and others
,
2006
,
Life Cycle Assessment: Principles and Practice
,
Natl. Risk Manag. Res. Lab.
,
Cincinnati, OH
.
44.
Shiau
,
C.-S. N.
,
Kaushal
,
N.
,
Hendrickson
,
C. T.
,
Peterson
,
S. B.
,
Whitacre
,
J. F.
, and
Michalek
,
J. J.
,
2010
, “
Optimal Plug-In Hybrid Electric Vehicle Design and Allocation for Minimum Life Cycle Cost, Petroleum Consumption, and Greenhouse Gas Emissions
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091013
.
45.
Cormen
,
T. H.
,
Leiserson
,
C. E.
,
Rivest
,
R. L.
, and
Stein
,
C.
,
2009
,
Introduction to Algorithms
,
MIT Press
,
Cambridge, MA
.
46.
Gutowski
,
T.
,
Dahmus
,
J.
, and
Thiriez
,
A.
,
2006
, “
Electrical Energy Requirements for Manufacturing Processes
,”
13th CIRP International Conference on Life Cycle Engineering
,
Leuven, Belguim
,
May
.
47.
Polgar
,
K.
,
1996
, “
Simplified Time Estimation Booklet for Basic Machining Operations. Massachusetts Institute of Technology
,”
PhD Thesis, MS Thesis
,
Department of Mechanical Engineering
,
Cambridge, MA, USA
.
48.
Facanha
,
C.
, and
Horvath
,
A.
,
2007
, “
Evaluation of Life-Cycle Air Emission Factors of Freight Transportation
,”
Environ. Sci. Technol.
,
41
(
20
), pp.
7138
7144
.
49.
Nahlik
,
M. J.
,
Kaehr
,
A. T.
,
Chester
,
M. V.
,
Horvath
,
A.
, and
Taptich
,
M. N.
,
2016
, “
Goods Movement Life Cycle Assessment for Greenhouse Gas Reduction Goals
,”
J. Ind. Ecol.
,
20
(
2
), pp.
317
328
.
50.
Mancini
,
L.
,
Sala
,
S.
,
Recchioni
,
M.
,
Benini
,
L.
,
Goralczyk
,
M.
, and
Pennington
,
D.
,
2015
, “
Potential of Life Cycle Assessment for Supporting the Management of Critical Raw Materials
,”
Int. J. Life Cycle Assess.
,
20
(
1
), pp.
100
116
.
51.
Kim
,
S.
, and
Dale
,
B.
,
2005
, “
Life Cycle Inventory Information of the United States Electricity System (11/17 pp)
,”
Int. J. Life Cycle Assess.
,
10
(
4
), pp.
294
304
.
52.
Olugbenga
,
O.
,
Kalyviotis
,
N.
, and
Saxe
,
S.
,
2019
, “
Embodied Emissions in Rail Infrastructure: a Critical Literature Review
,”
Environ. Res. Lett.
,
14
(
12
), p.
123002
.
53.
Gudipudi
,
P. P.
,
Underwood
,
B. S.
, and
Zalghout
,
A.
,
2017
, “
Impact of Climate Change on Pavement Structural Performance in the United States
,”
Transp. Res. Part Transp. Environ.
,
57
, pp.
172
184
.
54.
Guinée
,
J. B.
, and
Lindeijer
,
E.
,
2002
,
Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards
, Vol.
7
,
Springer Science & Business Media
,
Berlin
.
55.
Hu
,
C.
,
Youn
,
B. D.
, and
Wang
,
P.
,
2019
,
Engineering Design Under Uncertainty and Health Prognostics
,
Springer International Publishing
,
Berlin
.
56.
Shu
,
L. H.
, and
Flowers
,
W. C.
,
1998
, “
Reliability Modeling in Design for Remanufacture
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
620
627
.
57.
Li
,
M.
,
Sadoughi
,
M.
,
Hu
,
C.
,
Hu
,
Z.
,
Eshghi
,
A. T.
, and
Lee
,
S.
,
2019
, “
High-Dimensional Reliability-Based Design Optimization Involving Highly Nonlinear Constraints and Computationally Expensive Simulations
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051402
.
58.
Sánchez-Silva
,
M.
, and
Klutke
,
G.-A.
,
2016
,
Reliability and Life-Cycle Analysis of Deteriorating Systems
, Vol.
182
,
Springer
,
New York
.
You do not currently have access to this content.