Abstract

In this research, we collected eye-tracking data from nine engineering graduate students as they redesigned a traditionally manufactured part for additive manufacturing (AM). Final artifacts were assessed for manufacturability and quality of final design, and design behaviors were captured via the eye-tracking data. Statistical analysis of design behavior duration shows that participants with more than 3 years of industry experience spend significantly less time removing material and revising than those with less experience. Hidden Markov modeling (HMM) analysis of the design behaviors gives insight to the transitions between behaviors through which designers proceed. Findings show that high-performing designers proceeded through four behavioral states, smoothly transitioning between states. In contrast, low-performing designers roughly transitioned between states, with moderate transition probabilities back and forth between multiple states.

References

1.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C. L.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
CAD Comput. Aided Des.
,
69
(
4
), pp.
65
89
. 10.1016/j.cad.2015.04.001
2.
Laverne
,
F.
,
Segonds
,
F.
,
Anwer
,
N.
, and
Le Coq
,
M.
,
2015
, “
Assembly Based Methods to Support Product Innovation in Design for Additive Manufacturing: An Exploratory Case Study
,”
ASME J. Mech. Des. Trans.
,
137
(
12
), p.
121701
. 10.1115/1.4031589
3.
Alafaghani
,
A.
,
Qattawi
,
A.
, and
Ablat
,
M. A.
,
2017
, “
Design Consideration for Additive Manufacturing: Fused Deposition Modelling
,”
Open J. Appl. Sci.
,
7
(
6
), pp.
291
318
. 10.4236/ojapps.2017.76024
4.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
. 10.1115/1.4031156
5.
Yang
,
S.
,
Page
,
T.
, and
Zhao
,
Y. F.
,
2019
, “
Understanding the Role of Additive Manufacturing Knowledge in Stimulating Design Innovation for Novice Designers
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021713
. 10.1115/1.4041928
6.
Prabhu
,
R.
,
Miller
,
S. R.
,
Simpson
,
T. W.
, and
Meisel
,
N. A.
,
2018
, “
The Earlier the Better? Investigating the Importance of Timing on Effectiveness of Design for Additive Manufacturing Education
,”
Proceedings of ASME 2018 International Design Engineering Technical Conference on Compututer Information Engineering Conference
,
Quebec, Canada
, pp.
1
14
.
7.
Mehta
,
P. U.
, and
Berdanier
,
C. G. P.
,
2019
, “
A Systematic Review of Additive Manufacturing Education: Toward Engineering Education Research in AM
,”
Proc. ASEE Conf. Expo.
,
Tampa, FL
, pp.
1
12
.
8.
Simpson
,
T. W.
,
Williams
,
C. B.
, and
Hripko
,
M.
,
2017
, “
Preparing Industry for Additive Manufacturing and Its Applications: Summary & Recommendations From a National Science Foundation Workshop
,”
Addit. Manuf.
,
13
(
1
), pp.
166
178
. 10.1016/j.addma.2016.08.002
9.
Minetola
,
P.
,
Iuliano
,
L.
,
Bassoli
,
E.
, and
Gatto
,
A.
,
2015
, “
Impact of Additive Manufacturing on Engineering Education—Evidence From Italy
,”
Rapid Prototyping J.
,
21
(
5
), pp.
535
555
. 10.1108/RPJ-09-2014-0123
10.
GrabCad
,
2020
, https://grabcad.com/
11.
12.
Dassault Systems
,
2020
, .
14.
Ramey
,
K. E.
,
Champion
,
D. N.
,
Dyer
,
E. B.
,
Keifert
,
D. T.
,
Krist
,
C.
,
Meyerhoff
,
P.
,
Villanosa
,
K.
, and
Hilppö
,
J.
,
2016
, “
Qualitative Analysis of Video Data: Standards and Heuristics
,”
Proc. Int. Conf. Learn. Sci. ICLS
,
2
, pp.
1033
1040
.
15.
Bhowmick
,
T.
,
2006
, “
Building an Exploratory Visual Analysis Tool for Qualitative Researchers
,”
AutoCarto Int. Symp. Autom. Cartogr.
,
Vancouver, WA
, pp.
1
13
.
16.
Glaser
,
B. G.
, and
Strauss
,
A. L.
,
1967
,
The Discovery of Grounded Theory: Strategies for Qualitative Research
,
Aldine Publishing Company
,
Chicago
.
17.
UC Davis Center for Educational Effectiveness
, “
GORP Tool
.” https://cee.ucdavis.edu/GORP
18.
ATLAS 3D
,
2020
, https://atlas3d.xyz/
19.
Mona
,
S.
, and
Parker
,
J.
,
1998
, “
Introduction to Hidden Markov Models
,”
Bioinformatics
,
14
(
9
), pp.
755
763
. 10.1093/bioinformatics/14.9.755
20.
Krogh
,
A.
,
Brown
,
M.
,
Mian
,
I. S.
,
Sjolander
,
K.
, and
Haussler
,
D.
,
1994
, “
Hidden Markov Models in Computational Biology: Applications to Protein Modeling
,”
J. Mol. Biol.
,
235
(
5
), pp.
1501
1531
. 10.1006/jmbi.1994.1104
21.
Przytycka
,
T. M.
, and
Zheng
,
J.
,
2011
, “Hidden Markov Models,”
eLS
,
John Wiley & Sons
,
Hoboken, NJ
.
22.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2017
, “
Capturing Human Sequence-Learning Abilities in Configuration Design Tasks Through Markov Chains
,”
ASME J. Mech. Des.
,
139
(
9
), p.
091101
. 10.1115/1.4037185
23.
Hélie
,
S.
, and
Sun
,
R.
,
2010
, “
Incubation, Insight, and Creative Problem Solving: A Unified Theory and a Connectionist Model
,”
Psychol. Rev.
,
117
(
3
), pp.
994
1024
. 10.1037/a0019532
24.
Fan
,
Q.
,
Zhang
,
Y.
,
Jiang
,
L. H.
,
Li
,
Y.
, and
Hou
,
F.
,
2010
, “
The Think Aloud Experiment of the Designing Process of an Expert
,”
Appl. Mech. Mater.
,
44
(
1
), pp.
4081
4083
. 10.4028/www.scientific.net/AMM.44-47.4081
25.
Ball
,
L. J.
,
Ormerod
,
T. C.
, and
Morley
,
N. J.
,
2004
, “
Spontaneous Analogising in Engineering Design: A Comparative Analysis of Experts and Novices
,”
Des. Stud.
,
25
(
5
), pp.
495
508
. 10.1016/j.destud.2004.05.004
26.
Mosborg
,
S.
,
Adams
,
R.
,
Kim
,
R.
,
Atman
,
C. J.
,
Turns
,
J.
, and
Cardella
,
M.
,
2005
, “
Conceptions of the Engineering Design Process: An Expert Study of Advanced Practicing Professionals
,”
ASEE 2005 Annual Conference
,
Portland, OR
, pp.
1
27
.
27.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2019
, “
Design Heuristics for Additive Manufacturing Validated Through a User Study
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041101
. 10.1115/1.4041051
28.
Kuo
,
Y. H.
,
Cheng
,
C. C.
,
Lin
,
Y. S.
, and
San
,
C. H.
,
2018
, “
Support Structure Design in Additive Manufacturing Based on Topology Optimization
,”
Struct. Multidiscip. Optim.
,
57
(
1
), pp.
183
119
. 10.1007/s00158-017-1743-z
29.
Salonitis
,
K.
, and
Al Zarban
,
S.
,
2015
, “
Redesign Optimization for Manufacturing Using Additive Layer Techniques
,”
Procedia CIRP
,
36
, pp.
193
198
. 10.1016/j.procir.2015.01.058
You do not currently have access to this content.