Abstract

Engineers design for an inherently uncertain world. In the early stages of design processes, they commonly account for such uncertainty either by manually choosing a specific worst-case and multiplying uncertain parameters with safety factors or by using Monte Carlo simulations to estimate the probabilistic boundaries in which their design is feasible. The safety factors of this first practice are determined by industry and organizational standards, providing a limited account of uncertainty; the second practice is time intensive, requiring the development of separate testing infrastructure. In theory, robust optimization provides an alternative, allowing set-based conceptualizations of uncertainty to be represented during model development as optimizable design parameters. How these theoretical benefits translate to design practice has not previously been studied. In this work, we analyzed the present use of geometric programs as design models in the aerospace industry to determine the current state-of-the-art, then conducted a human-subjects experiment to investigate how various mathematical representations of uncertainty affect design space exploration. We found that robust optimization led to far more efficient explorations of possible designs with only small differences in an experimental participant’s understanding of their model. Specifically, the Pareto frontier of a typical participant using robust optimization left less performance “on the table” across various levels of risk than the very best frontiers of participants using industry-standard practices.

References

1.
Burnell
,
E.
,
Damen
,
N. B.
, and
Hoburg
,
W.
,
2020
, “
GPkit: A Human-Centered Approach to Convex Optimization in Engineering Design
,”
Conference on Human Factors in Computing Systems (CHI), Association for Computing Machinery
,
Honolulu, HI
, p.
12
.
2.
Bertsimas
,
D.
,
Brown
,
D. B.
, and
Caramanis
,
C.
,
2011
, “
Theory and Applications of Robust Optimization
,”
SIAM Rev.
,
53
(
3
), pp.
464
501
. 10.1137/080734510
3.
Öztürk
,
B.
, and
Saab
,
A.
,
2019
, “
Optimal Aircraft Design Decisions Under Uncertainty Via Robust Signomial Programming
,”
AIAA Aviation 2019 Forum
,
Dallas, TX
, AIAA, p.
29
.
4.
Saab
,
A.
,
Burnell
,
E.
, and
Hoburg
,
W. W.
,
2018
, “
Robust Designs via Geometric Programming
”.
arXiv:1808.07192
, p.
23
.
5.
Pahl
,
G.
, and
Beitz
,
W.
,
2013
,
Engineering Design: a Systematic Approach
,
Springer Science & Business Media
,
New York
.
6.
Ulrich
,
K. T.
,
Eppinger
,
S. D.
, and
Yang
,
M. C.
,
2020
,
Product Design and Development
,
McGraw-Hill Education
,
New York
.
7.
Leonardi
,
P. M.
,
2011
, “
When Flexible Routines Meet Flexible Technologies: Affordance, Constraint, and the Imbrication of Human and Material Agencies
,”
MIS Q.
,
35
(
1
), pp.
147
167
. 10.2307/23043493
8.
Sutherland
,
I. E.
,
1964
, “
Sketchpad: A Man-Machine Graphical Communication System
,”
Simulation
,
2
(
5
), p.
18
. 10.1177/003754976400200514
9.
Parkin
,
K. L.
,
Sercel
,
J. C.
,
Liu
,
M. J.
, and
Thunnissen
,
D. P.
,
2003
, “
IcemakerTM: An Excel-based Environment for Collaborative Design
,”
IEEE Aerospace Conference
,
Big Sky, MT
, IEEE, p.
11
.
10.
Nardi
,
B. A.
, and
Miller
,
J. R.
,
1991
, “
Twinkling Lights and Nested Loops: Distributed Problem Solving and Spreadsheet Development
,”
Int. J. Man-Mach. Studies
,
34
(
2
), pp.
161
184
. 10.1016/0020-7373(91)90040-E
11.
Mark
,
G.
,
2002
, “
Extreme Collaboration
,”
Commun. ACM
,
45
(
6
), pp.
89
93
. 10.1145/508448.508453
12.
Robertson
,
B.
, and
Radcliffe
,
D.
,
2009
, “
Impact of CAD Tools on Creative Problem Solving in Engineering Design
,”
Comput.-Aided Design
,
41
(
3
), pp.
136
146
. 10.1016/j.cad.2008.06.007
13.
Buenza
,
D.
, and
Stark
,
D.
,
2004
, “
Tools of the Trade: the Socio-Technology of Arbitrage in a Wall Street Trading Room
,”
Indus. Corporate Change
,
13
(
2
), pp.
369
400
. 10.1093/icc/dth015
14.
Greenwood
,
D. J.
, and
Levin
,
M.
,
2006
,
Introduction to Action Research: Social Research for Social Change
,
SAGE Publications
,
Thousand Oaks
.
15.
Fixson
,
S. K.
, and
Marion
,
T. J.
,
2012
, “
Back-loading: A Potential Side Effect of Employing Digital Design Tools in New Product Development
,”
J. Product Innov. Manage.
,
29
(
S1
), pp.
140
156
. 10.1111/j.1540-5885.2012.00959.x
16.
Mahan
,
T.
,
Meisel
,
N.
,
McComb
,
C.
, and
Menold
,
J.
,
2018
, “
Pulling At the Digital Thread: Exploring the Tolerance Stack Up Between Automatic Procedures and Expert Strategies in Scan to Print Processes
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021701
. 10.1115/1.4041927
17.
Hirschi
,
N.
, and
Frey
,
D.
,
2002
, “
Cognition and Complexity: An Experiment on the Effect of Coupling in Parameter Design
,”
Res. Eng. Design
,
13
(
3
), pp.
123
131
. 10.1007/s00163-002-0011-3
18.
Flager
,
F.
,
Gerber
,
D. J.
, and
Kallman
,
B.
,
2014
, “
Measuring the Impact of Scale and Coupling on Solution Quality for Building Design Problems
,”
Design Studies
,
35
(
2
), pp.
180
199
. 10.1016/j.destud.2013.11.001
19.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2015
, “
Rolling with the Punches: An Examination of Team Performance in a Design Task Subject to Drastic Changes
,”
Design Studies
,
36
, pp.
99
121
. 10.1016/j.destud.2014.10.001
20.
Austin-Breneman
,
J.
,
Honda
,
T.
, and
Yang
,
M. C.
,
2012
, “
A Study of Student Design Team Behaviors in Complex System Design
,”
ASME J. Mech. Des.
,
134
(
12
), p.
124504
. 10.1115/1.4007840
21.
Austin-Breneman
,
J.
,
Yu
,
B. Y.
, and
Yang
,
M. C.
,
2016
, “
Biased Information Passing Between Subsystems Over Time in Complex System Design
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011101
. 10.1115/1.4031745
22.
Yu
,
B. Y.
,
2015
, “
Human-centered Approaches to System Level Design With Applications to Desalination
,” Ph.D. thesis,
Massachusetts Institute of Technology
.
23.
Neeley
,
W. L.
,
Lim
,
K.
,
Zhu
,
A.
, and
Yang
,
M. C.
,
2013
, “
Building Fast to Think Faster: Exploiting Rapid Prototyping to Accelerate Ideation During Early Stage Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Portland, OR
.
24.
Brady
,
J. T.
,
1986
, “
A Theory of Productivity in the Creative Process
,”
IEEE Comput. Graphics Appl.
,
6
(
5
), pp.
25
34
. 10.1109/MCG.1986.276789
25.
Scott
,
S. D.
,
Lesh
,
N.
, and
Klau
,
G. W.
,
2002
, “
Investigating Human-computer Optimization
,”
Conference on Human Factors in Computing Systems (CHI), Association for Computing Machinery
,
Minneapolis, MN
, pp.
155
162
.
26.
Mueller
,
C.
, and
Ochsendorf
,
J.
,
2013
, “
An Integrated Computational Approach for Creative Conceptual Structural Design
,”
IASS Annual Symposia, International Association for Shell and Spatial Structures
,
Wrocław, Poland
, Vol.
2013
, pp.
1
6
.
27.
Barron
,
K.
,
Simpson
,
T. W.
,
Rothrock
,
L.
,
Frecker
,
M.
,
Barton
,
R. R.
, and
Ligetti
,
C.
,
2004
, “
Graphical User Interfaces for Engineering Design: Impact of Response Delay and Training on User Performance
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
,
Salt Lake City, UT
, American Society of Mechanical Engineers, pp.
11
20
.
28.
Egan
,
P.
,
Cagan
,
J.
,
Schunn
,
C.
, and
LeDuc
,
P.
,
2015
, “
Synergistic Human-Agent Methods for Deriving Effective Search Strategies: the Case of Nanoscale Design
,”
Res. Eng. Design
,
26
(
2
), pp.
145
169
. 10.1007/s00163-015-0190-3
29.
Boyd
,
S.
,
Kim
,
S.-J.
,
Vandenberghe
,
L.
, and
Hassibi
,
A.
,
2007
, “
A Tutorial on Geometric Programming
,”
Optim. Eng.
,
8
(
1
), pp.
67
127
. 10.1007/s11081-007-9001-7
30.
MOSEK ApS
,
2014
.
The MOSEK optimization APIs for C and Python
.
31.
Andersen
,
M. S.
,
Dahl
,
J.
, and
Vandenberghe
,
L.
,
2013
,
CVXOPT: A Python Package for Convex Optimization
.
32.
Burnell
,
E.
,
Stern
,
M.
,
Flooks
,
A.
, and
Yang
,
M. C.
,
2017
, “
Integrating Design and Optimization Tools: A Designer Centered Study
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE), American Society of Mechanical Engineers
,
Cleveland, OH
, American Society of Mechanical Engineers, p.
10
.
33.
Öztürk
,
B.
,
2018
, “
Conceptual Engineering Design and Optimization Methodologies Using Geometric Programming
,” Master’s thesis,
Massachusetts Institute of Technology
.
34.
Kirschen
,
P. G.
,
Burnell
,
E.
, and
Hoburg
,
W.
,
2016
, “
Signomial Programming Models for Aircraft Design
,”
54th AIAA Aerospace Sciences Meeting
,
San Diego, CA
, AIAA,p.
26
.
35.
York
,
M. A.
,
Öztürk
,
B.
,
Burnell
,
E.
, and
Hoburg
,
W. W.
,
2018
, “
Efficient Aircraft Multidisciplinary Design Optimization and Sensitivity Analysis Via Signomial Programming
,”
AIAA J.
,
56
(
11
), pp.
4546
4561
. 10.2514/1.J057020
36.
Burton
,
M. J.
, and
Hoburg
,
W. W.
,
2017
, “
Solar and Gas Powered Long-Endurance Unmanned Aircraft Sizing Via Geometric Programming
,”
Multidisciplinary Analysis and Optimization Conference
,
Denver, CO
, p.
14
.
37.
Burton
,
M.
,
Hansman
,
R. J.
,
Tao
,
T.
, and
Hoburg
,
W.
,
2019
, “
Flight Test Report of the Jungle Hawk Owl Long-Endurance UAV
”.
ICAT Report, 2018–09
.
You do not currently have access to this content.