An important factor in system longevity is service-phase evolvability, which is defined as the ability of a system to physically transform from one configuration to a more desirable configuration while in service. These transformations may or may not be known during the design process, and may or may not be reversible. In a different study, we examined 210 engineered systems and found that system excess and modularity allow a system to evolve while in service. Building on this observation, the present paper introduces mathematical relationships that map a system's excess to that system's ability to evolve. As introduced in this paper, this relationship is derived from elastic potential-energy theories. The use of the evolvability measure, and other related measures presented herein, are illustrated with simple examples and applied to the design of U.S. Navy nuclear aircraft carriers. Using these relationships, we show that the Navy's new Ford-class aircraft carrier is measurably more evolvable than the Nimitz-class carriers. While the ability for systems to evolve is based on excess and modularity, this paper is focused only on excess. The mapping between modularity and evolvability is the focus of another work by the authors.

References

1.
Simpson
,
T. W.
,
Rosen
,
D.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
1998
, “
Metrics for Assessing Design Freedom and Information Certainty in the Early Stages of Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
628
635
.10.1115/1.2829325
2.
Chen
,
W.
,
Simpson
,
T. W.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
1999
, “
Satisfying Ranged Sets of Design Requirements: A Design Metric Using Design Capability Indices
,”
Eng. Optim.
,
31
(
4
), pp.
615
639
.10.1080/03052159908941389
3.
Chen
,
W.
, and
Lewis
,
K.
,
1999
, “
A Robust Design Approach for Achieving Flexibility in Multidisciplinary Design
,”
AIAA J.
,
37
(
8
), pp.
982
990
.10.2514/2.805
4.
Bloebaum
,
C. L.
,
McGowan
,
A. R.
,
Lightfoot
,
M. C.
,
Collopy
,
P. D.
, and
Hazelrigg
,
G.
,
2012
, “
NSF/NASA Workshop on the Design of Large-Scale Complex Engineered Systems—From Research to Product Realization
,”
Proceedings of the 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Indianapolis, IN, Paper No. AIAA-2012-5572.
5.
Hanisch
,
C.
, and
Munz
,
G.
,
2008
, “
Evolvability and the Intangibles
,”
Assembly Autom.
,
28
(
3
), pp.
194
199
.10.1108/01445150810889448
6.
Madni
,
A. M.
,
2012
, “
Adaptable Platform-Based Engineering: Key Enablers and Outlook for the Future
,”
Syst. Eng.
,
15
(
1
), pp.
95
107
.10.1002/sys.20197
7.
Urken
,
A. B.
,
Nimz
,
A.
, and
Schuck
,
T. M.
,
2012
, “
Designing Evolvable Systems in a Framework of Robust, Resilient and Sustainable Engineering Analysis
,”
Adv. Eng. Inf.
,
26
(
3
), pp.
553
562
.10.1016/j.aei.2012.05.006
8.
Simpson
,
T. W.
, and
Martins
,
J. R. R. A.
,
2011
, “
Multidisciplinary Design Optimization for Complex Engineered Systems: Report From a National Science Foundation Workshop
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101002
.10.1115/1.4004465
9.
Martin
,
M. V.
, and
Ishii
,
K.
,
2002
, “
Design for Variety: Developing Standardized and Modularized Product Platform Architectures
,”
Res. Eng. Des.
,
13
(
4
), pp.
213
235
.
10.
Bierly
,
P. E.
,
Gallagher
,
S.
, and
Spender
,
J. C.
,
2008
, “
Innovation and Learning in High-Reliability Organizations: A Case Study of United States and Russian Nuclear Attack Submarines, 1970–2000
,”
IEEE Trans. Eng. Manage.
,
55
(
3
), pp.
393
408
.10.1109/TEM.2008.922643
11.
Beesemyer
,
J. C.
,
Ross
,
A. M.
, and
Rhodes
,
D. H.
,
2012
, “
An Empirical Investigation of System Changes to Frame Links Between Design Decisions and Ilities
,”
Proc. Comput. Sci.
,
8
, pp.
33
38
.10.1016/j.procs.2012.01.010
12.
Keese
,
D. A.
,
Tilstra
,
A. H.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2007
, “
Emporically-Derived Principles for Designing Products With Flexibility for Future Evolution
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Las Vegas, NV, Paper No. DETC2007-35695.
13.
Keese
,
D.
,
Takawale
,
N. P.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2006
, “
An Enhanced Change Modes and Effects Analysis (CMEA) Tool for Measuring Product Flexibility With Applications to Consumer Products
,”
Proceedings of ASME 2006 International Design Engineering Technical Conferences
, Philadelphia, PA, Paper No. DETC2006-99478.
14.
Tilstra
,
A. H.
,
Backlund
,
P. B.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2008
, “
Industrial Case Studies in Product Flexibility for Future Evolution: An Application and Evaluation of Design Guilelines
,”
Proceedings of the ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, New York, Paper No. DETC2008-49370.
15.
Tilstra
,
A. H.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2009
, “
Analysis of Product Flexibility for Future Evolution Based on Design Guilelines and a High-Defintion Design Structure Matrix
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, San Diego, CA, Paper No. DETC2009-87118.
16.
Van Beek
,
T. J.
, and
Tomiyama
,
T.
,
2012
, “
Structured Workflow Approach to Support Evolvability
,”
Adv. Eng. Inf.
,
26
(
3
), pp.
487
501
.10.1016/j.aei.2012.05.003
17.
Suh
,
N. P.
,
1991
,
Principles of Design
,
Oxford University Press
,
Oxford, UK
.
18.
Sandborn
,
P. A.
, and
Herald
,
T. E.
,
2003
, “
Optimum Technology Insertion Into Systems Based on the Assessment of Viability
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
4
), pp.
734
738
.10.1109/TCAPT.2003.820984
19.
Suh
,
E.
,
de Weck
,
O. L.
, and
Chang
,
D.
,
2007
, “
Flexible Product Platforms: Framework and Case Study
,”
Res. Eng. Des.
,
18
(
2
), pp.
67
89
.10.1007/s00163-007-0032-z
20.
Suh
,
E.
,
Furst
,
M. R.
,
Mihalyov
,
K. J.
, and
de Weck
,
O. L.
,
2010
, “
Technology Infusion for Complex Systems: A Framework and Case Study
,”
Syst. Eng.
,
13
(
2
), pp.
186
203
.
21.
Fulcoly
,
D. O.
,
Ross
,
A. M.
, and
Rhodes
,
D. H.
,
2012
, “
Evaluating System Change Options and Timing Using the Epoch Syncopation Framework
,”
Proc. Comput. Sci.
,
8
, pp.
22
30
.10.1016/j.procs.2012.01.009
22.
Bowman
,
M. W.
,
1999
,
Lockheed C-130 Hercules
Crowood Press
, Wiltshire, UK.
23.
Francillon
,
R. J.
,
1987
,
Lockheed Aircraft since 1913
,
Naval Institute
, Annapolis, MD.
24.
Smith
,
P. C.
,
2001
,
Lockheed C-130 Hercules: The World's Favourite Military Transport
.
Airlife Press
, Ramsbury, UK.
25.
Lewis
,
P. K.
, and
Mattson
,
C. A.
,
2012
, “
A Method for Developing Systems That Traverse the Pareto Frontiers of Multiple System Concepts Through Modularity
,”
Struct. Multidiscip. Optim.
,
45
(
4
), pp.
467
478
.10.1007/s00158-011-0735-7
26.
Siddiqi
,
A.
, and
de Weck
,
O. L.
,
2008
, “
Modeling Methods and Conceptual Design Principles for Reconfigurable Systems
,”
ASME J. Mech. Des.
,
130
(
10
), pp.
101
112
.10.1115/1.2965598
27.
Ferguson
,
S.
, and
Lewis
,
K.
,
2006
, “
Effective Development of Reconfigurable Systems Using Linear State-Feedback Control
,”
AIAA J.
,
44
(
4
), pp.
868
878
.10.2514/1.17147
28.
Ferguson
,
S.
,
Lewis
,
K.
,
Siddiqi
,
A.
, and
de Weck
,
O.
,
2007
, “
Flexible and Reconfigurable Systems: Nomenclature and Review
,”
ASME Design Engineering Technical Conferences, Design Automation Conference
, Las Vegas, NV, Paper No. DETC2007/DAC-35745.
29.
Ferguson
,
S.
,
Tilstra
,
A.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2009
, “
Development of a Changeable Airfoil Optimization Model for Use in the Multidisciplinary Design of Unmanned Aerial Vehicles
,”
ASME Design Engineering Technical Conference, Design Automation Conference
, San Diego, CA, Paper No. DETC2009-87482.
30.
Olewnik
,
A.
,
Brauen
,
T.
,
Ferguson
,
S.
, and
Lewis
,
K.
,
2004
, “
A Framework for Flexible Systems and Its Implementation in Multiattribute Decision Making
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
412
419
.10.1115/1.1701874
31.
Lewis
,
P. K.
,
Murray
, V
. R.
, and
Mattson
,
C. A.
,
2011
, “
A Design Optimization Strategy for Creating Devices That Traverse the Pareto Frontier Over Time
,”
Struct. Multidiscip. Optim.
,
43
(
2
), February, pp.
191
204
.10.1007/s00158-010-0555-1
32.
Morrise
,
J. S.
,
Mattson
,
C. A.
,
Lewis
,
P. K.
, and
Magleby
,
S. P.
,
2011
, “
A Method for Designing Collaborative Products for Poverty Alleviation
,”
ASME Design Engineering Technical Conference, Design Automation Conference
, Washington, DC, Paper No. DETC2011-47409.
33.
Sullivan
,
E.
,
Tortorice
,
M.
, and
Ferguson
,
S.
,
2010
, “
Using Design Reconfigurability to Mitigate the Effects of Uncontrolled System Variations
,”
13th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Fort Worth, TX, Paper No. AIAA-2010-9185.
34.
Chmarra
,
M. K.
,
Arts
,
L.
, and
Tomiyama
,
T.
,
2008
, “
Towards Adaptable Architecture
,”
ASME Design Engineering Technical Conference, Design Automation Conference
, New York, Paper No. DETC2008-49971.
35.
Arts
,
L.
,
Chmarra
,
M. K.
, and
Tomiyama
,
T.
,
2008
, “
Modularization Method for Adaptable Products
,”
ASME International Design Engineering Technical Conference and Computers and Information in Engineering Conference
, New York, Paper No. DETC2008-49338.
36.
Spencer
,
A. J. M.
,
2004
,
Continuum Mechanics
,
Dover Publications, Inc.
, Mineola, NY.
37.
Tackett
,
M. W. P.
,
2013
, “
A Mathematical Model for Quantifying System Evolvability Using Excess and Modularity
,” Master's thesis, Brigham Young University, Provo, UT.
38.
Singh
,
V.
,
Skiles
,
S. M.
,
Krager
,
J. E.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Sierakowski
,
R.
,
2009
, “
Innovation in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081010
.10.1115/1.3125205
39.
Steckler
,
K.
,
2009
, “
Pearl Harbor Salute
,” http://outontheporch.org/tag/pearl-harbor/, May 28.
40.
Greenert
,
J. W.
,
2012
, “
Payloads Over Platforms: Charting a New Course
,”
U.S. Naval Inst. Proc.
,
138
(
7
), pp.
16
23
.
41.
Schank
,
J.
,
Smith
,
G.
,
Alkire
,
B.
,
Arena
,
M. V.
,
Birkler
,
J.
,
Chiesa
,
J.
,
Keating
,
E.
, and
Schmidt
,
L.
,
2005
,
Modernizing the U.S. Aircraft Carrier Fleet: Accelerating CVN 21 Production Versus Mid-Life Refueling
,
RAND Corporation
, Santa Monica, CA.
42.
Howard
,
W.
,
2002
, “
Future of the Aircraft Carrier
,” Technical Report, Defense Science Board Task Force, Accession No. ADA-408129.
43.
Wolfson
,
D.
,
2004
, “
A Solution to the Inherent List on Nimitz Class Aircraft Carriers
,” Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.
44.
Moran
,
W.
,
Moore
,
T.
, and
McNamee
,
E.
,
2012
, “
A ‘Leap Ahead’ for the 21st-Century Navy
,”
U.S. Naval Inst. Proc.
,
138
(
9
), pp.
18
23
.
45.
Cable
,
C.
,
2011
, “
Demistifying Service Life
,” ASNE Flagship.
46.
Doyle
,
M. R.
,
Samuel
,
D. J.
,
Conway
,
T.
, and
Klimowski
,
R. R.
,
1995
, “
Electromagnetic Aircraft Launch System-EMALS
,”
IEEE Trans. Magn.
,
31
(
1
), pp.
528
533
.10.1109/20.364638
47.
Bloebaum
,
C. L.
, and
McGowan
,
A. R.
,
2012
, “
The Design of Large-Scale Complex Engineered Systems: Present Challenges and Future Promise
,”
Proceedings of the 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Indianapolis, IN, Paper No. AIAA-2012-5571.
You do not currently have access to this content.