Current wind farm layout optimization research assumes a continuous piece of land is readily available and focuses on advancing optimization methods. In reality, projects rely on landowners’ permission for success. When a viable site is identified, local residents are approached for permission to build turbines on their land, typically in exchange for monetary compensation. Landowners play a crucial role in the development process, and some land parcels are more important to the success of project than others. This paper relaxes the assumption that a continuous piece of land is available, developing a novel approach that includes a model of landowner participation rates. A genetic algorithm (GA) is adopted to solve the nonlinear constrained optimization problem, minimizing cost and maximizing power output. The optimization results show that, given a projected participation rate, we can identify the most crucial plots prior to the negotiation process with landowners. This will ultimately increase the efficiency of wind farm development.

References

2.
Macalester College, 2011, “
Wind Energy—Visual Impacts and Public Perception: Cascade Wind
,” http://www.macalester.edu/windvisual/cascadeinfo.htmlhttp://www.macalester.edu/windvisual/cascadeinfo.html
7.
Mosetti
,
G.
,
Poloni
,
C.
, and
Diviacco
,
B.
, 1994, “
Optimization of Wind Turbine Positioning in Large Windfarms by Means of a Genetic Algorithm
,”
J. Wind. Eng. Ind. Aerodyn.
,
51
(
1
), pp.
105
116
.
8.
Grady
,
S.
,
Hussaini
,
M.
, and
Abdullah
,
M.
, 2005, “
Placement of Wind Turbines Using Genetic Algorithms
,”
Renewable Energy
,
30
(
2
), pp.
259
270
.
9.
Şişbot
,
S.
,
Turgut
,
Ö.
,
Tunç
,
M.
, and
Çamdalı
,
Ü.
, 2010, “
Optimal Positioning of Wind Turbines on Gökçeada Using Multiobjective Genetic Algorithm
,”
Wind Energy
,
13
(
4
), pp.
297
306
.
10.
Wang
,
F.
,
Liu
,
D.
, and
Zeng
,
L.
, 2009, “
Study on Computational Grids in Placement of Wind Turbines Using Genetic Algorithm
,”
World Non-Grid-Connected Wind Power and Energy Conference Proceedings
, Sept. 24–26, Nanjing, China.
11.
Bilbao
,
M.
, and
Alba
,
E.
, 2009, “
GA and PSO Applied to Wind Energy Optimization
,”
CACIC Conference Proceedings
, Oct. 5–9, Jujuy, Argentina.
12.
Bilbao
,
M.
, and
Alba
,
E.
, 2009, “
Simulated Annealing for Optimization of Wind Farm Annual Profit
,”
Proceedings of 2nd International Symposium on Logistics and Industrial Informatics
, Sept. 10–12, Linz, Austria.
13.
Ozturk
,
A.
, and
Norman
,
B.
, 2004, “
Heuristic Methods for Wind Energy Conversion System Positioning
,”
Electr. Power Syst. Res.
,
70
(
3
), pp.
179
185
.
14.
Marmidis
,
G.
,
Lazarou
,
S.
, and
Pyrgioti
,
E.
, 2008, “
Optimal Placement of Wind Turbines in a Wind Park Using Monte Carlo Simulation
,”
Renewable Energy
,
33
(
7
), pp.
1455
1460
.
15.
DuPont
,
B.
, and
Cagan
,
J.
, 2012, “
An Extended Pattern Search Approach to Wind Farm Layout Optimization
,”
ASME J. Mech. Des.
, (in press).
16.
Chowdhury
,
S.
,
Messac
,
A.
,
Zhang
,
J.
,
Castillo
,
L.
, and
Lebron
,
J.
, 2010, “
Optimizing the Unrestricted Placement of Turbines of Differing Rotor Diameters in a Wind Farm for Maximum Power Generation
,”
ASME IDETC Conference Proceedings
, Aug. 15–18, Montreal, Canada.
17.
Kahle
,
C.
, 2009, “
Average Size of Farms by County, Years 1890 to 1997
,” Census of Agriculture, National Agricultural Statistics Service, U.S. Department of Agriculture, http://www.recap.iastate.edu/atlas/farms/average-farm-size.phphttp://www.recap.iastate.edu/atlas/farms/average-farm-size.php
18.
World Wind Energy Association, 2011, “
Rotor and Rotor Blades: An Overview
,” http://www.wwindea.org/technology/ch01/en/1_2_1_2.htmlhttp://www.wwindea.org/technology/ch01/en/1_2_1_2.html
20.
Kusiak
,
A.
, and
Song
,
Z.
, 2010, “
Design of Wind Farm Layout for Maximum Wind Energy Capture
,”
Renewable Energy
,
35
(
3
), pp.
685
694
.
21.
Morgan
,
E.
,
Lackner
,
M.
,
Vogel
,
R.
, and
Baise
,
L.
, 2011, “
Probability Distributions for Offshore Wind Speeds
,”
Energy Convers. Manage.
,
52
(
1
), pp.
15
26
.
22.
Carta
,
J.
,
Ramıŕez
,
P.
, and
Velázquez
,
S.
, 2009, “
A Review of Wind Speed Probability Distributions used in Wind Energy Analysis: Case studies in the Canary Islands
,”
Renewable and Sustainable Energy Reviews
,
13
(
5
), pp.
933
955
.
23.
Zhang
,
J.
,
Chowdhury
,
S.
,
Messac
,
A.
, and
Castillo
,
L.
, 2011, “
Multivariate and Multimodal Wind Distribution Model Based on Kernel Density Estimation
,”
ASME 2011 5th International Conference on Energy Sustainability
Washington, DC.
24.
Erdem
,
E.
, and
Shi
,
J.
, 2011, “
Comparison of Bivariate Distribution Construction Approaches for Analysing Wind Speed and Direction Data
,”
Wind Energy
,
14
(
1
), pp.
27
41
.
25.
González
,
J.
,
Rodríguez
,
A.
,
Mora
,
J.
,
Santos
,
J.
, and
Payán
,
M.
, 2010, “
Optimization of Wind Farm Turbines Layout Using an Evolutive Algorithm
,”
Renewable Energy
,
35
(
8
), pp.
1671
1681
.
26.
Bianchi
,
F.
,
Battista
,
H.
, and
Mantz
,
R.
, 2007,
Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design
,
Springer-Verlag
,
London, United Kingdom
.
27.
Elkinton
,
C.
,
Manwell
,
J.
, and
McGowan
,
J.
, 2006, “
Offshore Wind Farm Layout Optimization (OWFLO) Project: Priliminary Results
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
, AIAA, Reno, Nevada.
28.
Mikkelsen
,
R.
,
Sørensen
,
J.
,
Øye
,
S.
, and
Troldborg
,
N.
, 2007, “
Analysis of Power Enhancement for a Row of Wind Turbines Using the Actuator Line Technique
,”
J. Phys.: Conf. Ser.
,
75
(2007), p.
012044
.
29.
Barthelmie
,
J.
,
Folkerts
,
L.
,
Rados
,
K.
,
Larsen
,
C.
,
Pryor
,
C.
,
Frandsen
,
T.
,
Lange
,
B.
, and
Schepers
,
G.
, 2006, “
Comparison of Wake Model Simulations With Offshore Wind Turbine Wake Profiles Measured by Sodar
,”
J. Atmos. Oceanic Phys.
,
23
, pp.
888
901
.
30.
Barthelmie
,
J.
,
Rathmann
,
O.
,
Frandsen
,
T.
,
Hansen
,
K.
,
Politis
,
E.
,
Prospathopoulos
,
J.
,
Rados
,
K.
,
Cabezón
,
D.
,
Schlez
,
W.
,
Phillips
,
J.
,
Neubert
,
A.
,
Schepers
,
G.
, and
van der Pijl
,
P.
, 2007, “
Modelling and Measurements of Wakes in Large Wind Farms
,”
J. Phys.: Conf. Ser.
,
75
, p.
012049
.
31.
Samorani
,
M.
, 2010, “
The Wind Farm Layout Optimization Problem
,” Handbook of Wind Power Systems, ed., P. Pardalos Leeds School of Business, University of Colorado at Boulder.
32.
Jensen
,
N.
, 1983, “
A Note on Wind Generator Interaction
,” Risø National Laboratory, DK-4000 Roskilde, Denmark.
33.
Houck
,
C.
,
Joines
,
J.
, and
Kay
,
M.
, 1995, “
A Genetic Algorithm for Function Optimization: a Matlab Implementation
,” North Carolina State University, Raleigh, NC, Technical Report No. NCSU-IE-TR-95- 09.
34.
Davis
,
L.
, 1991,
Handbook of Genetic Algorithms
,
Van Nostrand Reinhold Co.
,
New York, NY
.
35.
Vanderplaats
,
G. N.
, 1984,
Numerical Optimization Techniques for Engineering Design: With Applications
,
McGraw-Hill College
,
New York, NY
.
36.
Yeniay
,
Ö.
, 2005, “
Penalty Function Methods for Constrained Optimization With Genetic Algorithms
,”
Math. Comput. Appl.
,
10
(
1
), pp.
45
56
. Available at: https://asr.org.tr/pdf/vol10no1p45.pdfhttps://asr.org.tr/pdf/vol10no1p45.pdf
39.
Aakre
,
D.
, and
Haugen
,
R.
, 2009, “
Wind Turbine Lease Consideration for Landowners
,” EC-1394,
North Dakota State University Extension Service
.
40.
Aakre
,
D.
, and
Haugen
,
R.
, 2010, “
Wind Turbine Lease Considerations for Landowners
,” North Dakota State University Extension Service.
41.
Talley
,
C.
, 2010, “
Things a Landowner (Lessor) Should Consider in a Wind Lease Agreement
,”
Michigan State University Extension
.
You do not currently have access to this content.