Many engineering optimization problems are multi-objective, constrained and have uncertainty in their inputs. For such problems it is desirable to obtain solutions that are multi-objectively optimum and robust. A robust solution is one that as a result of input uncertainty has variations in its objective and constraint functions which are within an acceptable range. This paper presents a new approximation-assisted MORO (AA-MORO) technique with interval uncertainty. The technique is a significant improvement, in terms of computational effort, over previously reported MORO techniques. AA-MORO includes an upper-level problem that solves a multi-objective optimization problem whose feasible domain is iteratively restricted by constraint cuts determined by a lower-level optimization problem. AA-MORO also includes an online approximation wherein optimal solutions from the upper- and lower-level optimization problems are used to iteratively improve an approximation to the objective and constraint functions. Several examples are used to test the proposed technique. The test results show that the proposed AA-MORO reasonably approximates solutions obtained from previous MORO approaches while its computational effort, in terms of the number of function calls, is significantly reduced compared to the previous approaches.

References

1.
Chen
,
W.
,
Allen
,
J. K.
,
Mavris
,
D.
, and
Mistree
,
F.
, 1996, “
A Concept Exploration Method for Determining Robust Top-Level Specifications
,”
Eng. Optimiz.
,
26
(
2
), pp.
137
158
.
2.
Choi
,
H.-J.
,
Mcdowell
,
D. L.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 2008, “
An Inductive Design Exploration Method for Hierarchical Systems Design Under Uncertainty
,”
Eng. Optimiz.
,
40
(
4
), pp.
287
307
.
3.
Li
,
M.
,
Gabriel
,
S. A.
,
Shim
,
Y.
, and
Azarm
,
S.
, 2011, “
Interval Uncertainty-Based Robust Optimization for Convex and Non-Convex Quadratic Programs With Applications in Network Infrastructure Planning
,”
Netw. Spatial Econ.
,
11
(
1
), pp.
159
191
.
4.
Siddiqui
,
S.
,
Azarm
,
S.
, and
Gabriel
,
S.
, 2011, “
A Modified Benders Decomposition Method for Efficient Robust Optimization Under Interval Uncertainty
,”
Struct. Multidiscip. Optim.
5.
Park
,
G.-J.
,
Lee
,
T.-H.
,
Lee
,
K. H.
, and
Hwang
,
K.-H.
, 2006, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
.
6.
Beyer
,
H.-G.
, and
Sendhoff
,
B.
, 2007, “
Robust Optimization—A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33–34
), pp.
3190
3218
.
7.
Du
,
X.
, and
Chen
,
W.
, 2000, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
385
394
.
8.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
221
232
.
9.
Gunawan
,
S.
, and
Azarm
,
S.
, 2004, “
Non-Gradient Based Parameter Sensitivity Estimation for Single Objective Robust Design Optimization
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
395
402
.
10.
Lombardi
,
M.
, and
Haftka
,
R. T.
, 1998, “
Anti-Optimization Technique for Structural Design Under Load Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
157
(
1–2
), pp.
19
31
.
11.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
12.
Zou
,
T.
, and
Mahadevan
,
S.
, 2006, “
A Direct Decoupling Approach for Efficient Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
31
(
3
), pp.
190
200
.
13.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
, 2007, “
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1215
1224
.
14.
Chen
,
W.
,
Wiecek
,
M. M.
, and
Zhang
,
J.
, 1999, “
Quality Utility—A Compromise Programming Approach to Robust Design
,”
ASME J. Mech. Des.
,
121
(
2
), pp.
179
187
.
15.
Messac
,
A.
, and
Ismail-Yahaya
,
A.
, 2002, “
Multiobjective Robust Design Using Physical Programming
,”
Struct. Multidiscip. Optimiz.
,
23
(
5
), pp.
357
371
.
16.
Ray
,
T.
2002, “
Constrained Robust Optimal Design Using a Multiobjective Evolutionary Algorithm
,”
Proceedings of the 2002 Congress on Evolutionary Computation
, pp.
419
424
.
17.
Shimoyama
,
K.
,
Lim
,
J. N.
,
Jeong
,
S.
,
Obayashi
,
S.
, and
Koishi
,
M.
, 2009, “
Practical Implementation of Robust Design Assisted by Response Surface Approximation and Visual Data-Mining
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061007
.
18.
Deb
,
K.
, and
Gupta
,
H.
, 2006, “
Introducing Robustness in Multi-Objective Optimization
,”
Evol. Comput.
,
14
(
4
), pp.
463
494
.
19.
Gaspar-Cunha
,
A.
, and
Covas
,
J.
, 2008, “
Robustness in Multi-Objective Optimization Using Evolutionary Algorithms
,”
Comput. Optim. Appl.
,
39
(
1
), pp.
75
96
.
20.
Gunawan
,
S.
, and
Azarm
,
S.
, 2005, “
Multi-Objective Robust Optimization Using a Sensitivity Region Concept
,”
Struct. Multidiscip. Optim.
,
29
(
1
), pp.
50
60
.
21.
Li
,
M.
,
Azarm
,
S.
, and
Boyars
,
A.
, 2006, “
A New Deterministic Approach Using Sensitivity Region Measures for Multi-Objective Robust and Feasibility Robust Design Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
874
883
.
22.
Hu
,
W.
,
Li
,
M.
,
Azarm
,
S.
,
Al Hashimi
,
S.
,
Almansoori
,
A.
, and
Al-Qasas
,
N.
, 2009, “
Improving Multi-Objective Robust Optimization under Interval Uncertainty Using Worst Possible Point Constraint Cuts
,”
CD-ROM Proceedings of the ASME International Design Engineering Technical Conferences
,
San Diego, CA
, Paper No. DETC2009 – 87312.
23.
Jin
,
R.
,
Du
,
X.
, and
Chen
,
W.
, 2003, “
The Use of Metamodeling Techniques for Optimization under Uncertainty
,”
Struct. Multidiscip. Optim.
,
25
(
2
), pp.
99
116
.
24.
Lee
,
K. H.
, and
Park
,
G. J.
, 2006, “
A Global Robust Optimization Using Kriging Based Approximation Model
,”
JSME Int. J., Ser. C
,
49
(
3
), pp.
779
788
.
25.
Picheny
,
V.
,
Ginsbourger
,
D.
,
Roustant
,
O.
,
Haftka
,
R. T.
, and
Kim
,
N.-H.
, 2010, “
Adaptive Designs of Experiments for Accurate Approximation of a Target Region
,”
ASME J. Mech. Des.
,
132
(
7
), p.
071008
.
26.
Viana
,
F. A. C.
, and
Haftka
,
R.T.
, 2008, “
Using Multiple Surrogates for Metamodeling
,”
7th ASMO-UK/ISSMO International Conference on Engineering Design Optimization
,
Bath, UK
.
27.
Koehler
,
J. R.
, and
Owen
,
A. B.
, 1996, “
Computer Experiments
,”
Handbook of Statistics
,
Elsevier Science
,
New York
, pp.
261
308
.
28.
Sacks
,
J.
,
Welch
,
W. J.
,
Toby
,
J. M.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
29.
Aute
,
V.
, 2010, “
Single and Multiresponse Adaptive Design of Experiments With Application to Design Optimization of Novel Heat Exchangers
,” Ph.D. Dissertation, University of Maryland, College Park.
30.
Deb
,
K.
, 2001,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
New York
.
31.
Miettinen
,
K. M.
, 1999,
Nonlinear Multiobjective Optimization
,
Kluwer Academic Publishers
,
Boston, MA
.
32.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
33.
Qingfu
,
Z.
,
Aimin
,
Z.
, and
Yaochu
,
J.
, 2008, “
Rm-Meda: A Regularity Model-Based Multiobjective Estimation of Distribution Algorithm
,”
IEEE Trans. Evol. Comput.
,
12
(
1
), pp.
41
63
.
34.
Fulvio
,
T.
, and
Alberto
,
B.
, 1999, “
Multiobjective Optimization of Uncertain Structures Through Fuzzy Set and Random Set Theory
,”
Comput. Aided Civ. Infrastruct. Eng.
,
14
(
2
), pp.
119
140
.
You do not currently have access to this content.