Successful realization of a flapping wing micro-air vehicle (MAV) requires development of a light weight drive mechanism that can convert the continuous rotary motion of the motor into oscillatory flapping motion of the wings. The drive mechanism should have low weight to maximize the payload and battery capacity. It should also have high power transmission efficiency to maximize the operational range and to minimize weight of the motor. In order to make flapping wing MAVs attractive in search, rescue, and recovery efforts, they should be disposable from the cost point of view. Injection molded compliant drive mechanisms are an attractive design option because of manufacturing scalability and reduction in the number of parts. However, realizing compliant drive mechanism using injection molding requires use of multipiece multigate molds. Molding process constraints need to be considered during the design stage to successfully realize the drive mechanism. This paper describes an approach for determining the drive mechanism shape and size that meets both the design and molding requirements. The novel aspects of this work include (1) minimizing the number of mold pieces and (2) the use of sacrificial shape elements to reduce the impact of the weld-lines on the structural performance. The design generated by the approach described in this paper was utilized to realize an operational flapping wing MAV.

1.
Madangopal
,
R.
,
Khan
,
Z. A.
, and
Agrawal
,
S. K.
, 2005, “
Biologically Inspired Design of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms and Quasi-Steady Aerodynamics
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
809
816
.
2.
Madangopal
,
R.
,
Khan
,
Z. A.
, and
Agrawal
,
S. K.
, 2006, “
Energetics-Based Design of Small Flapping-Wing Micro Air Vehicles
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
11
(
4
), pp.
433
438
.
3.
Galinski
,
C.
, and
Zbikowski
,
R.
, 2007, “
Materials Challenges in the Design of an Insect-Like Flapping Wing Mechanism Based on a Four-Bar Linkage
,”
Mater. Des.
0264-1275,
28
(
3
), pp.
783
796
.
4.
Cox
,
A.
,
Monopoli
,
D.
,
Cveticanin
,
D.
,
Goldfarb
,
M.
, and
Garcia
,
E.
, 2002, “
The Development of Elastodynamic Components for Piezoelectrically Actuated Flapping Micro-Air Vehicles
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
13
(
9
), pp.
611
615
.
5.
Banala
,
S. K.
, and
Agrawal
,
S. K.
, 2005, “
Design and Optimization of a Mechanism for Out-of-Plane Insect Winglike Motion With Twist
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
841
844
.
6.
Conn
,
A. T.
,
Burgess
,
S. C.
, and
Ling
,
C. S.
, 2007, “
Design of a Parallel Crank-Rocker Flapping Mechanism for Insect-Inspired Micro Air Vehicles
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
221
(
10
), pp.
1211
1222
.
7.
Tantanawat
,
T.
, and
Kota
,
S.
, 2007, “
Design of Compliant Mechanisms in Minimizing Input Power in Dynamic Applications
,”
ASME J. Mech. Des.
0161-8458,
129
(
10
), pp.
1064
1075
.
8.
Zdunich
,
P.
,
Bilyk
,
D.
,
MacMaster
,
M.
,
Loewen
,
D.
,
DeLaurier
,
J.
,
Kornbluh
,
R.
,
Low
,
T.
,
Stanford
,
S.
, and
Holeman
,
D.
, 2007, “
Development and Testing of the Mentor Flapping-Wing Micro Air Vehicle
,”
J. Aircr.
0021-8669,
44
(
5
), pp.
1701
1711
.
9.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2004, “
A Novel Compliant Mechanism for Converting Reciprocating Translation Into Enclosing Curved Paths
,”
ASME J. Mech. Des.
0161-8458,
126
(
4
), pp.
667
672
.
10.
Zhou
,
H.
, and
Ting
,
K.
, 2006, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
J. Mech. Des.
1050-0472,
128
, pp.
551
558
.
11.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley-Interscience
,
New York
.
12.
Beaumont
,
J. P.
, 2004,
Runner and Gating Design Handbook: Tools for Successful Injection Molding
,
Hanser Gardner Publications
,
Cincinnati, OH
.
13.
Priyadarshi
,
A.
, and
Gupta
,
S. K.
, 2004, “
Geometric Algorithms for Automated Design of Multi-Piece Permanent Molds
,”
Comput.-Aided Des.
0010-4485,
36
(
3
), pp.
241
260
.
14.
Beaumont
,
J. P.
,
Nagel
,
R.
, and
Sherman
,
R.
, 2002,
Successful Injection Molding: Process, Design, and Simulation
,
Hanser Gardner Publications
,
Cincinnati, OH
.
15.
Kazmer
,
D. O.
, 2007,
Injection Mold Design Engineering
,
Hanser Gardner Publications
,
Cincinnati, OH
.
16.
Madou
,
M. J.
, 2002,
Fundamentals of Microfabrication
,
CRC Press
,
Boca Raton, FL
.
17.
Malloy
,
R. A.
, 1994,
Part Design for Injection Molding
,
Hanser Gardner Publications
,
Cincinnati, OH
.
18.
Menges
,
G.
,
Michaeli
,
W.
, and
Mohren
,
P.
, 2001,
How to Make Injection Molds
,
Hanser Gardner Publications
,
Cincinnati, OH
.
19.
Fuh
,
J. Y. H.
,
Zhang
,
Y. F.
,
Nee
,
A. Y. C.
, and
Fu
,
M. W.
, 2004,
Computer-Aided Injection Mold Design and Manufacture (Plastic Engineering)
,
CRC Press
,
Boca Raton, FL
.
20.
Mathur
,
R.
,
Fink
,
B. K.
, and
Advani
,
S. G.
, 1999, “
Use of Genetic Algorithms to Optimize Gate and Vent Locations for the Resin Transfer Molding Process
,”
Polym. Compos.
0272-8397,
20
(
2
), pp.
167
178
.
21.
Shoemaker
,
J.
, 2005,
Moldflow Design Guide: A Resource for Plastics Engineers
,
Hanser Gardner Publications
,
Cincinnati, OH
.
22.
Henz
,
B. J.
,
Mohan
,
R. V.
, and
Shires
,
D. R.
, 2007, “
A Hybrid Global-Local Approach for Optimization of Injection Gate Locations in Liquid Composite Molding Process Simulations
,”
Composites, Part A
1359-835X,
38
, pp.
1932
1946
.
23.
Dhaliwal
,
S.
,
Gupta
,
S. K.
, and
Huang
,
J.
, 2000 “
Computing Exact Global Accessibility Cones for Polyhedral Objects
,”
ASME Design for Manufacturing Conference
, Baltimore, MD.
24.
Majhi
,
J.
,
Gupta
,
P.
, and
Janardan
,
R.
, 1999, “
Computing a Flattest, Undercut-Free Parting Line for a Convex Polyhedron, With Application to Mold Design
,”
Comput. Geom.
0925-7721,
13
, pp.
229
252
.
25.
Interactive Toy Concepts Inc.
, 2008, iFly Vamp.
You do not currently have access to this content.