We propose a deterministic approach for global optimization of nonconvex quasiseparable problems encountered frequently in engineering systems design. Our branch and bound-based optimization algorithm applies Lagrangian decomposition to (1) generate tight lower bounds by exploiting the structure of the problem and (2) enable parallel computing of subsystems and use of efficient dual methods. We apply the approach to two important product design applications: (1) product family optimization with a fixed-platform configuration and (2) single product design using an integrated marketing-engineering framework. Results show that Lagrangian bounds are much tighter than the factorable programming bounds implemented by the commercial global solver BARON, and the proposed lower bounding scheme shows encouraging robustness and scalability, enabling solution of some highly nonlinear problems that cause difficulty for existing solvers. The deterministic approach also provides lower bounds on the global optimum, eliminating uncertainty of solution quality inherent to popular applications of stochastic and local solvers.

1.
Floudas
,
C. A.
, 2000,
Deterministic Global Optimization: Theory, Methods and Applications
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
2.
Tawarmalani
,
M.
, and
Sahinidis
,
N. V.
, 2002,
Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming
,
Kluwer Academic
,
The Netherlands
.
3.
Grossmann
,
I. E.
, 2002, “
Review of Nonlinear Mixed-Integer and Disjunctive Programming Techniques
,”
Optim. Eng.
,
3
(
3
), pp.
227
252
. 1389-4420
4.
Ryoo
,
H. S.
, and
Sahinidis
,
N. V.
, 1996, “
A Branch and Reduce Approach to Global Optimization
,”
J. Global Optim.
0925-5001,
8
, pp.
107
139
.
5.
Floudas
,
C. A.
, and
Pardalos
,
P. M.
, 2003,
Frontiers in Global Optimization
(
Nonconvex Optimization and Its Applications
),
Kluwer Academic
,
Dordrecht, The Netherlands
.
6.
Grossmann
,
I. E.
, 1996,
Global Optimization in Engineering Design
,
Kluwer
,
Dordrecht
.
7.
Adjiman
,
C. S.
, and
Floudas
,
C. A.
, 1996, “
Rigorous Convex Underestimators for General Twice-Differentiable Problems
,”
J. Global Optim.
0925-5001,
9
, pp.
23
40
.
8.
Tawarmalani
,
M.
, and
Sahinidis
,
N. V.
, 2001, “
Semidefinite Relaxations of Fractional Programs via Novel Convexification Techniques
,”
J. Global Optim.
0925-5001,
20
, pp.
133
154
.
9.
Tawarmalani
,
M.
, and
Sahinidis
,
N. V.
, 2002, “
Convex Extensions and Envelops of Lower Semi-Continuous Functions
,”
Math. Program.
0025-5610,
93
, pp.
247
263
.
10.
Tawarmalani
,
M.
, and
Sahinidis
,
N. V.
, 2005, “
A Polyhedral Branch-and-Cut Approach to Global Optimization
,”
Math. Program.
0025-5610,
103
, pp.
225
249
.
11.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
474
480
.
12.
Khajavirad
,
A.
, and
Michalek
,
J. J.
, 2008, “
A Decomposed Approach for Solving the Joint Product Family Platform Selection and Design Problem With Generalized Commonality
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
071101
.
13.
Khajavirad
,
A.
, and
Michalek
,
J. J.
, 2008, “
An Efficient Decomposed Multi-Objective Genetic Algorithm for Solving the Joint Product Family Selection and Design Problem With Generalized Commonality
,”
Struct. Multidiscip. Optim.
1615-147X, in press.
14.
Kokkolaras
,
M.
,
Fellini
,
R.
,
Kim
,
H. M.
,
Michelena
,
N. F.
, and
Papalambros
,
P. Y.
, 2002, “
Extension of the Target Cascading Formulation to the Design of Product Families
,”
Struct. Multidiscip. Optim.
1615-147X,
24
(
4
), pp.
293
301
.
15.
Kim
,
H. M.
,
Chen
,
W.
, and
Wiecek
,
M. M.
, 2006, “
Lagrangian Coordination for Enhancing the Convergence of Analytical Target Cascading
,”
AIAA J.
0001-1452,
44
(
10
), pp.
2197
2207
.
16.
Li
,
Y.
,
Lu
,
Z.
, and
Michalek
,
J. J.
, 2007, “
Diagonal Quadratic Approximation for Parallelization of Analytical Target Cascading
,”
ASME J. Mech. Des.
1050-0472,
130
(
5
), p.
051402
17.
Lee
,
K. Y.
,
Roh
,
M. I.
, and
Cho
,
S.
, 2001, “
Multidisciplinary Design Optimization of Mechanical Systems Using Collaborative Optimization Approach
,”
Int. J. Veh. Des.
0143-3369,
25
(
4
), pp.
353
368
.
18.
Tosserams
,
S.
,
Etman
,
L. F. P.
,
Papalambros
,
P. Y.
, and
Rooda
,
J. E.
, 2006, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,”
Struct. Multidiscip. Optim.
1615-147X,
31
(
3
), pp.
176
189
.
19.
Sahinidis
,
N. V.
, 1996, “
BARON: A General Purpose Global Optimization Software Package
,”
J. Global Optim.
,
8
, pp.
201
205
. 0925-5001
20.
Bertsekas
,
D. P.
,
Nedic
,
A.
, and
Ozdaglar
,
A. E.
, 2003,
Convex Analysis and Optimization
,
Athena Scientific
,
Nashua, NH
.
21.
Geoffrion
,
A. M.
, 1974, “
Lagrangian Relaxation for Integer Programming
,”
Math. Program.
,
2
, pp.
82
114
. 0025-5610
22.
Guignard
,
M.
, 2003, “
Lagrangian Relaxation
,”
Top
,
11
, pp.
151
228
. 1134-5764
23.
Adhya
,
N.
,
Tawarmalani
,
M.
, and
Sahinidis
,
N. V.
, 1999, “
A Lagrangian Approach to the Pooling Problems
,”
Ind. Eng. Chem. Res.
,
38
, pp.
1956
1972
. 0888-5885
24.
Karrupiah
,
R.
, and
Grossmann
,
I. E.
, 2007, “
A Lagrangian Based Branch-and-Cut Algorithm for Global Optimization of Nonconvex Mixed-Integer Nonlinear Programs With Decomposable Structures
,”
J. Global Optim.
0925-5001,
41
, pp.
1573
2916
.
25.
Nowak
,
I.
, 2005, “
Lagrangian Decomposition of Block-Separable Mixed-Integer All-Quadratic Programs
,”
Math. Program.
0025-5610,
102
, pp.
295
312
.
26.
Wagner
,
T. C.
, and
Papalambros
,
P. Y.
, 1999, “
Decomposition Analysis and Optimization of an Automotive Powertrain Design Model
,”
Eng. Optim.
,
31
(
3
), pp.
273
299
. 0305-215X
27.
Shor
,
N. Z.
, 1985,
Minimization Methods for Nondifferentiable Functions
,
Springer-Verlag
,
Berlin
.
28.
T. W.
Simpson
,
Z.
Siddique
, and
J.
Jiao
, eds., 2005,
Product Platform and Product Family Design: Methods and Applications
,
Kluwer Academic
,
New York
.
29.
Messac
,
A.
,
Martinez
,
M. P.
, and
Simpson
,
T. W.
, 2002, “
A Penalty Function for Product Family Design Using Physical Programming
,”
ASME J. Mech. Des.
0161-8458,
124
(
2
), pp.
164
172
.
30.
Khire
,
R. A.
,
Messac
,
A.
, and
Simpson
,
T. W.
, 2006, “
Optimal Design of Product Families Using Selection-Integrated Optimization (SIO) Methodology
,”
11th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, AIAA, Portsmouth, VA.
31.
D’Souza
,
B.
, and
Simpson
,
T. W.
, 2003, “
A Genetic Algorithm Based Method for Product Family Design Optimization
,”
Eng. Optim.
,
35
(
1
), pp.
1
18
. 0305-215X
32.
Neumaier
,
A.
,
Shcherbina
,
O.
,
Huyer
,
W.
, and
Vink
,
T.
, 2005, “
A Comparison of Complete Global Optimization Solvers
,”
Math. Program.
0025-5610,
103
, pp.
335
356
.
33.
Messac
,
A.
,
Martinez
,
M. P.
, and
Simpson
,
T. W.
, 2002, “
Effective Product Family Design Using Physical Programming
,”
Eng. Optim.
,
34
(
3
), pp.
245
261
. 0305-215X
34.
Michalek
,
J. J.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
, 2005, “
Linking Marketing and Engineering Product Design Decisions via Analytical Target Cascading
,”
J. Prod. Innov. Manage.
,
22
(
1
), pp.
42
62
. 0737-6782
35.
Li
,
H.
, and
Azarm
,
S.
, 2000, “
Product Design Selection Under Uncertainty and With Competitive Advantage
,”
ASME J. Mech. Des.
0161-8458,
122
(
4
), pp.
411
418
.
36.
Kumar
,
D.
,
Chen
,
W.
, and
Simpson
,
T. W.
, 2007, “
A Market-Driven Approach to Product Family Design
,”
Int. J. Prod. Res.
, in press.
37.
Padberg
,
M. W.
, 2000, “
Approximating Separable Nonlinear Functions via Mixed Zero-One Programs
,”
Oper. Res. Lett.
0167-6377,
27
, pp.
1
5
.
You do not currently have access to this content.