Design recovery is defined as determining the relevant form and functions and their relationships for a component in order to generate a complete engineering representation. To lead to a more complete model, an integrated approach that assesses the component from different perspectives is presented here, as no one perspective or set of tools can provide a comprehensive engineering representation. There is always the potential for error; hence, the necessity to assess latent design and/or design recovery issues in rigorous manner. A modified failure modes and effects analysis (FMEA) was developed to provide a foundation for the reconstructed model’s design validation. The modified FMEA is designed to interface directly with the design recovery framework. A matrix based procedure, which considers feature functions and relationships, is developed to assist the designer to quickly assess the feature design using a consistent structured approach. The results are plotted, and subsequent testing strategies are suggested based on the characteristics of the features being assessed. Examples illustrate the proposed methodologies and highlight their merits.

1.
Pal
,
P.
, and
Ballav
,
R.
, 2007, “
Object Shape Reconstruction Through NURBS Surface Interpolation
,”
Int. J. Prod. Res.
0020-7543,
45
(
2
), pp.
287
307
.
2.
Attene
,
M.
, and
Spagnuolo
,
M.
, 2000, “
Automatic Surface Reconstruction From Point Sets in Space
,”
Comput. Graph. Forum
1067-7055,
19
, pp.
457
465
.
3.
Bernardini
,
F.
,
Bajaj
,
C.
,
Chen
,
J.
, and
Schikore
,
D.
, 1999, “
Automatic Reconstruction of 3D CAD Models From Digital Scans
,”
Int. J. Comput. Geom. Appl.
0218-1959,
9
, pp.
327
369
.
4.
Motavalli
,
S.
, 1998, “
Review of Reverse Engineering Approaches
,”
Comput. Ind. Eng.
0360-8352,
35
(
1–2
), pp.
25
28
.
5.
Tilley
,
S. R.
, 1998, “
A Reverse-Engineering Environment Framework
,” Carnegie Mellon University, Software Engineering Institute Technical Report No. SEI-98-TR-005.
6.
Rugaber
,
S.
, 1994, “
White Paper on Reverse Engineering
,” College of Computing and Software Engineering Research Center, Georgia Institute of Technology.
7.
Pahl
,
G.
, and
Beitz
,
W.
, 1988,
Engineering Design: A Systematic Approach
,
Springer-Verlag
,
London, UK
.
8.
Suh
,
N. P.
, 2001,
Axiomatic Design: Advances and Applications
,
Oxford University Press
,
New York
.
9.
Altshuller
,
G.
, 1997,
40 Principles: TRIZ Keys to Technical Innovation
,
Technical Innovation Center
,
Worchester, MA
.
10.
Zachman
,
J.
, 2002,
Enterprise Architecture
,
Zachman International
,
La Canada, CA
.
11.
Urbanic
,
R. J.
,
ElMaraghy
,
H. A.
,
ElMaraghy
,
W. H.
, 2007, “
Collaborative Design Recovery Framework
,”
Int. J. Comput. Integr. Manuf.
0951-192X, Special Edition,
7
(
2
), pp.
146
165
.
12.
Urbanic
,
R. J.
,
ElMaraghy
,
H. A.
, and
ElMaraghy
,
W. H.
, 2006, “
An Integrated Systematic Design Recovery Framework
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
(
4
), pp.
318
330
.
13.
Hirtz
,
J.
,
Stone
,
R.
,
McAdams
,
D.
,
Szykman
,
S.
, and
Wood
,
K.
, 2002, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
0934-9839,
13
, pp.
65
82
.
14.
Guenov
,
M.
, and
Barker
,
S.
, 2004, “
Application of Axiomatic Design and Design Structure Matrix to the Decomposition of Engineering Systems
,”
J. Syst. Eng.
0022-4820,
8
, pp.
29
35
.
15.
Kurtoglu
,
T.
, and
Tumer
,
I. Y.
, 2008, “
A Graph-Based Fault Identification and Propagation Framework for Functional Design of Complex Systems
,”
ASME J. Mech. Des.
0161-8458,
130
(
5
), p.
051401
.
16.
Arunajadai
,
S.
,
Stone
,
R.
,
Tumer
,
I.
, 2002, “
A Framework for Creating a Function-Based Design Tool for Failure Mode Identification
,”
Proceedings of DETC2002
, Paper No. DETC2002/DTM-34018.
17.
Stone
,
R.
,
Turner
,
I.
, and
Van Wie
,
M.
, 2005, “
The Function-Failure Design Method
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
397
407
.
18.
Teng
,
S. G.
,
Ho
,
S. M.
,
Shumar
,
D.
, and
Liu
,
P.
, 2006, “
Implementing FMEA in a Collaborative Supply Chain Environment
,”
Int. J. Qual. Reliab. Manage.
0265-671X,
23
, pp.
179
196
.
19.
Teoh
,
P. C.
, and
Case
,
K.
, 2004, “
Failure Modes and Effects Analysis Through Knowledge Modeling
,”
J. Mater. Process. Technol.
0924-0136,
153-154
, pp.
253
260
.
20.
Chao
,
L. P.
, and
Ishii
,
K.
, 2007, “
Design Process Error Proofing: Failure Modes and Effects Analysis of the Design Process
,”
ASME J. Mech. Des.
0161-8458,
129
(
5
), pp.
491
501
.
21.
Pillay
,
A.
, and
Wang
,
J.
, 2003, “
Modified Failure Mode and Effects Analysis Using Approximate Reasoning
,”
Reliab. Eng. Syst. Saf.
0951-8320,
79
, pp.
69
85
.
22.
Goh
,
Y. M.
,
McMahon
,
C. A.
, and
Booker
,
J. D.
, 2007, “
Development and Characterisation of Error Functions in Design
,”
Res. Eng. Des.
0934-9839,
18
(
3
), pp.
129
148
.
23.
Levy
,
G. N.
,
Schindel
,
R.
, and
Kruth
,
J. P.
, 2003, “
Rapid Manufacturing and Rapid Tooling With Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives
,”
CIRP Ann.
0007-8506,
52
(
2
), pp.
589
609
.
24.
2003,
Machinery’s Handbook
, 26th ed.,
Industrial
,
New York
.
25.
Urbanic
,
R. J.
,
ElMaraghy
,
H. A.
,
ElMaraghy
,
W. H.
, 2008, “
A Reverse Engineering Methodology for Rotary Components From Point Cloud Data
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
37
, pp.
1146
1167
.
You do not currently have access to this content.