A nonlinear spring has a defined nonlinear load-displacement function, which is also equivalent to its strain energy absorption rate. Various applications benefit from nonlinear springs, including prosthetics and microelectromechanical system devices. Since each nonlinear spring application requires a unique load-displacement function, spring configurations must be custom designed, and no generalized design methodology exists. In this paper, we present a generalized nonlinear spring synthesis methodology that (i) synthesizes a spring for any prescribed nonlinear load-displacement function and (ii) generates designs having distributed compliance. We introduce a design parametrization that is conducive to geometric nonlinearities, enabling individual beam segments to vary their effective stiffness as the spring deforms. Key features of our method include (i) a branching network of compliant beams used for topology synthesis rather than a ground structure or a continuum model based design parametrization, (ii) curved beams without sudden changes in cross section, offering a more even stress distribution, and (iii) boundary conditions that impose both axial and bending loads on the compliant members and enable large rotations while minimizing bending stresses. To generate nonlinear spring designs, the design parametrization is implemented into a genetic algorithm, and the objective function evaluates spring designs based on the prescribed load-displacement function. The designs are analyzed using nonlinear finite element analysis. Three nonlinear spring examples are presented. Each has a unique prescribed load-displacement function, including a (i) “J-shaped,” (ii) “S-shaped,” and (iii) constant-force function. A fourth example reveals the methodology’s versatility by generating a large displacement linear spring. The results demonstrate the effectiveness of this generalized synthesis methodology for designing nonlinear springs for any given load-displacement function.

1.
Vogel
,
S.
, 1998,
Cats’ Paws and Catapults
,
Norton
,
New York
.
2.
Rhoads
,
J. F.
,
Shaw
,
S. W.
,
Turner
,
K. L.
, and
Baskaran
,
R.
, 2005, “
Tunable Microelectromechanical Filters That Exploit Parametric Resonance
,”
ASME J. Vibr. Acoust.
0739-3717,
127
(
5
), pp.
423
430
.
3.
Bajaj
,
A.
, and
Krousgrill
,
C. M.
, 2001, “
Nonlinear System Resonance Phenomena
,”
Encyclopedia of Vibrations
,
S. G.
Braun
, ed.,
Academic
,
San Diego
, pp.
928
935
.
4.
Herder
,
J.
, 2001, “
Energy-Free Systems. Theory, Conception, and Design of Statically Balanced Spring Mechanisms
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
5.
Pedersen
,
C. B. W.
, 2003, “
Topology Optimization Design of Crushed 2D-Frames for Desired Energy Absorption History
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
5–6
), pp.
268
382
.
6.
Parmley
,
R. O.
, 2000,
Illustrated Sourcebook of Mechanical Components
,
McGraw-Hill
,
New York
.
7.
Migliore
,
S. A.
,
Brown
,
E. A.
, and
DeWeerth
,
S. P.
, 2007, “
Novel Nonlinear Elastic Actuators for Passively Controlling Robotic Joint Compliance
,”
ASME J. Mech. Des.
1050-0472,
129
(
4
), pp.
406
412
.
8.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
9.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Kikuchi
,
K.
, 1994, “
Strategies for Systematic Synthesis of Compliant MEMS
,”
1994 International Mechanical Engineering Congress and Exposition
,
ASME
,
Chicago, IL
, Vol.
55
, pp.
677
686
.
10.
Frecker
,
M.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
N.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
1050-0472,
119
(
2
), pp.
238
245
.
11.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452,
25
(
4
), pp.
495
526
.
12.
Hetrick
,
J. A.
, and
Kota
,
S.
, 1999, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
229
234
.
13.
Joo
,
Y.
,
Kota
,
S.
, and
Kikuchi
,
N.
, 2000, “
Topological Synthesis of Compliant Mechanisms Using Linear Beam Elements
,”
Mech. Struct. Mach.
0890-5452,
28
(
4
), pp.
245
280
.
14.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Optimization of Compliant Mechanisms With Strength Considerations
,”
Mech. Struct. Mach.
0890-5452,
29
, pp.
199
222
.
15.
Lu
,
K.
, and
Kota
,
S.
, 2003, “
Design of Compliant Mechanisms for Morphing Structural Shapes
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
(
6
), pp.
379
391
.
16.
Buhl
,
T.
,
Pedersen
,
C. B. W.
, and
Sigmund
,
O.
, 2000, “
Stiffness Design of Geometrically Non-Linear Structures Using Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
19
(
2
), pp.
93
104
.
17.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 2001, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
26–27
), pp.
3443
3459
.
18.
Pedersen
,
C.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
2683
2705
.
19.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
1050-0472,
123
(
1
), pp.
33
42
.
20.
Joo
,
J.
, and
Kota
,
S.
, 2004, “
Topological Synthesis of Compliant Mechanisms Using Nonlinear Beam Elements
,”
Mech. Based Des. Struct. Mach.
1539-7734,
32
(
1
), pp.
17
38
.
21.
Tai
,
K.
, and
Akhtar
,
S.
, 2005, “
Structural Topology Optimization Using a Genetic Algorithm With Amorphological Geometric Representation Scheme
,”
Struct. Multidiscip. Optim.
1615-147X,
30
(
2
), pp.
113
127
.
22.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
, 2007, “
Synthesis of Path Generating Compliant Mechanisms Using Initially Curved Frame Elements
,”
ASME J. Mech. Des.
1050-0472,
129
(
10
), pp.
1056
1063
.
23.
Pedersen
,
C. B. W.
,
Fleck
,
N. A.
, and
Ananthasuresh
,
G. K.
, 2006, “
Design of a Compliant Mechanism to Modify an Actuator Characteristic to Deliver a Constant Output Force
,”
ASME J. Mech. Des.
1050-0472,
128
(
5
), pp.
1101
1112
.
24.
Pedersen
,
C. B. W.
, 2004, “
Crashworthiness Design of Transient Frame Structures Using Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
6–8
), pp.
653
678
.
25.
Lu
,
K.-J.
, and
Kota
,
S.
, 2006, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
1050-0472,
128
(
5
), pp.
1080
1091
.
26.
Xu
,
D.
, and
Ananthasuresh
,
G. K.
, 2003, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
253
261
.
27.
Zhou
,
H.
, and
Ting
,
K.
, 2006, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
ASME J. Mech. Des.
1050-0472,
128
(
3
), pp.
551
558
.
28.
Chipperfield
,
A.
,
Fleming
,
P.
,
Pohlheim
,
H.
, and
Fonseca
,
C.
, 2002, “
Genetic Algorithm Toolbox for Use With Matlab
,” User’s Guide Version 1.2.
29.
Hibbitt, Karlsson, and Sorensen, Inc. 2004. ABAQUS Analysis User’s Manual, Version 6.5.
30.
Goldberg
,
D.
, 1989,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison-Wesley
,
Boston, MA
.
31.
Holland
,
J. H.
, 1975,
Adaptation in Natural and Artificial Systems
,
The University of Michigan Press
,
Ann Arbor, MI
.
32.
Lu
,
K.
, 2004, “
Synthesis of Shape Morphing Compliant Mechanisms
,” Ph.D. thesis, University of Michigan, Ann Arbor.
You do not currently have access to this content.