A two-degree-of-freedom (2-DOF), analytical model of a hydraulic valve lifter is derived. Special features of the model include the effects of bulk oil compressibility, multimode behavior due to plunger check valve modeling, and provision for the inclusion of third and fourth body displacements to aid in the use of the model in extended, multi-DOF systems. It is shown that motion of the lifter plunger and body must satisfy a coupled system of third-order, nonlinear differential equations of motion. It is also shown that the special cases of zero oil compressibility and/or 1-DOF motion of lifter plunger can be obtained from the general third-order equations. For the case of zero oil compressibility, using Newtonian fluid assumptions, the equations of motion are shown to reduce to a system of second-order, linear differential equations. The differential equations are numerically integrated in five scenarios designed to test various aspects of the model. A modal analysis of the 2-DOF, compressible model with an external contact spring is performed and is shown to be in excellent agreement with simulation results.

This content is only available via PDF.
You do not currently have access to this content.