Electron beam additive manufacturing (EBAM) is a powder-bed fusion additive manufacturing (AM) technology that can make full density metallic components using a layer-by-layer fabrication method. To build each layer, the EBAM process includes powder spreading, preheating, melting, and solidification. The quality of the build part, process reliability, and energy efficiency depends typically on the thermal behavior, material properties, and heat source parameters involved in the EBAM process. Therefore, characterizing those properties and understanding the correlations among the process parameters are essential to evaluate the performance of the EBAM process. In this study, a three-dimensional computational fluid dynamics (CFD) model with Ti-6Al-4V powder was developed incorporating the temperature-dependent thermal properties and a moving conical volumetric heat source with Gaussian distribution to conduct the simulations of the EBAM process. The melt pool dynamics and its thermal behavior were investigated numerically, and results for temperature profile, melt pool geometry, cooling rate and variation in density, thermal conductivity, specific heat capacity, and enthalpy were obtained for several sets of electron beam specifications. Validation of the model was performed by comparing the simulation results with the experimental results for the size of the melt pool.

References

1.
Raplee
,
J.
,
Plotkowski
,
A.
,
Kirka
,
M. M.
,
Dinwiddie
,
R.
,
Okello
,
A.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2017
, “
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing
,”
Sci. Rep.
7
(
43554
), pp.
1
16
.
2.
Sames
,
W. J.
,
List
,
F. A.
,
Pannala
,
S.
,
Dehoff
,
R. R.
, and
Babu
,
S. S.
,
2016
, “
The Metallurgy and Processing Science of Metal Additive Manufacturing
,”
Int. Mater. Rev.
61
(
5
), pp.
315
360
.
3.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2015
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1
), pp.
389
405
.
4.
Gong
,
X.
,
Anderson
,
T.
, and
Chou
,
K.
,
2014
, “
Review on Powder-Based Electron Beam Additive Manufacturing Technology
,”
Manuf. Rev.
1
(
2014
), pp.
1
12
.
5.
Uriondo
,
A.
,
Esperon-Miguez
,
M.
, and
Perinpanayagam
,
S.
,
2015
, “
The Present and Future of Additive Manufacturing in the Aerospace Sector: A Review of Important Aspects
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
229
(
11
), pp.
2132
2147
.
6.
Giannatsis
,
J.
, and
Dedoussis
,
V.
,
2009
, “
Additive Fabrication Technologies Applied to Medicine and Health Care: A Review
,”
Int. J. Adv. Manuf. Technol.
,
40
(
1–2
), pp.
116
127
.
7.
Ciurana
,
J.
,
2014
, “
Designing, Prototyping and Manufacturing Medical Devices: An Overview
,”
Int. J. Comput. Integr. Manuf.
,
27
(
10
), pp.
901
918
.
8.
Riedlbauer
,
D.
,
Scharowsky
,
T.
,
Singer
,
R. F.
,
Steinmann
,
P.
,
Körner
,
C.
, and
Mergheim
,
J.
,
2017
, “
Macroscopic Simulation and Experimental Measurement of Melt Pool Characteristics in Selective Electron Beam Melting of Ti-6Al-4V
,”
Int. J. Adv. Manuf. Technol.
88
(
5
), pp.
1309
1317
.
9.
Gong
,
X.
,
Cheng
,
B.
,
Price
,
S.
, and
Chou
,
K.
, “
Powder-Bed Electron-Beam-Melting Additive Manufacturing: Powder Characterization, Process Simulation and Metrology
,”
Proceedings of the ASME Early Career Technical Conference
,
Birmingham, AL
,
Nov. 2–3, 2013
.
10.
Murr
,
L.
,
Martinez
,
E.
,
Gaytan
,
S. M.
,
Ramirez
,
D. A.
,
Machado
,
B. I.
,
Shindo
,
P. W.
,
Martinez
,
J. L.
,
Medina
,
F.
,
Wooten
,
J.
,
Ciscel
,
D.
,
Ackelid
,
U.
, and
Wicker
,
R. B.
,
2011
, “
Microstructural Architecture, Microstructures, and Mechanical Properties for a Nickel-Base Superalloy Fabricated by Electron Beam Melting
,”
Metall. Mater. Trans. A
,
42
(
11
), pp.
3491
3508
.
11.
Gaytan
,
S. M.
,
Murr
,
L. E.
,
Medina
,
F.
,
Martinez
,
E.
,
Lopez
,
M. I.
, and
Wicker
,
R. B.
,
2009
, “
Advanced Metal Powder Based Manufacturing of Complex Components by Electron Beam Melting
,”
Mater. Technol.
,
24
(
3
), pp.
181
190
.
12.
Cormier
,
D.
,
Harrysson
,
O.
, and
West
,
H.
,
2004
, “
Characterization of H13 Steel Produced Via Electron Beam Melting
,”
Rapid Prototyping J.
,
10
(
1
), pp.
35
41
.
13.
Rodriguez
,
E.
,
Medina
,
F.
,
Espalin
,
D.
,
Terrazas
,
C.
,
Muse
,
D.
,
Henry
,
C.
,
MacDonald
,
E.
, and
Wicker
,
R.
, “
Integration of a Thermal Imaging Feedback Control System in Electron Beam Melting
,”
Proceedings From the Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8, 2012
.
14.
Roberts
,
I. A.
,
Wang
,
C. J.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D. J.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
916
923
.
15.
Liu
,
C.
,
Wu
,
B.
, and
Zhang
,
J.
,
2010
, “
Numerical Investigation of Residual Stress in Thick Titanium Alloy Plate Joined With Electron Beam Welding
,”
Metall. Mater. Trans. B
,
41
(
5
), pp.
1129
1138
.
16.
Luo
,
Y.
,
Liu
,
J.
, and
Ye
,
H.
,
2010
, “
An Analytical Model and Tomographic Calculation of Vacuum Electron Beam Welding Heat Source
,”
Vacuum
,
84
(
6
), pp.
857
863
.
17.
Lacki
,
P.
, and
Adamus
,
K.
,
2011
, “
Numerical Simulation of the Electron Beam Welding Process
,”
Comput. Struct.
,
89
(
11–12
), pp.
977
985
.
18.
Rouquette
,
S.
,
Guo
,
J.
, and
Le Masson
,
P.
,
2007
, “
Estimation of the Parameters of a Gaussian Heat Source by the Levenberg–Marquardt Method: Application to the Electron Beam Welding
,”
Int. J. Therm. Sci.
,
46
(
2
), pp.
128
138
.
19.
Hemmer
,
H.
, and
Grong
,
Ø.
,
1999
, “
Prediction of Penetration Depths During Electron Beam Welding
,”
Sci. Technol. Weld. Joining
,
4
(
4
), pp.
219
225
.
20.
Wang
,
L.
,
Felicelli
,
S.
,
Gooroochurn
,
Y.
,
Wang
,
P. T.
, and
Horstemeyer
,
M. F.
,
2008
, “
Optimization of the LENS Process for Steady Molten Pool Size
,”
Mater. Sci. Eng. A
,
474
(
1–2
), pp.
148
156
.
21.
Lankalapalli
,
K.
,
Tu
,
J. F.
, and
Gartner
,
M.
,
1996
, “
A Model for Estimating Penetration Depth of Laser Welding Processes
,”
J. Phys. D: Appl. Phys.
29
(
7
), pp.
1831
1841
.
22.
Qi
,
H.
,
Mazumder
,
J.
, and
Ki
,
H.
,
2006
, “
Numerical Simulation of Heat Transfer and Fluid Flow in Coaxial Laser Cladding Process for Direct Metal Deposition
,”
J. Appl. Phys
,
100
(
2
), pp.
1
11
, 024903.
23.
Wen
,
S.
, and
Shin
,
Y. C.
,
2010
, “
Modeling of Transport Phenomena During the Coaxial Laser Direct Deposition Process
,”
J. Appl. Phys.
108
(
4
), pp.
1
9
.
24.
Choi
,
J.
,
Han
,
L.
, and
Hua
,
Y.
,
2005
, “
Modeling and Experiments of Laser Cladding With Droplet Injection
,”
ASME J. Heat Transf.
,
127
(
9
), pp.
978
986
.
25.
Cho
,
W.
,
Na
,
S.
,
Thomy
,
C.
, and
Vollertsen
,
F.
,
2012
, “
Numerical Simulation of Molten Pool Dynamics in High Power Disk Laser Welding
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
262
275
.
26.
Moraitis
,
G. A.
, and
Labeas
,
G. N.
,
2008
, “
Residual Stress and Distortion Calculation of Laser Beam Welding for Aluminum Lap Joints
,”
J. Mater. Process. Technol.
198
(
1
), pp.
260
269
.
27.
Wang
,
R.
,
Lei
,
Y.
, and
Shi
,
Y.
,
2011
, “
Numerical Simulation of Transient Temperature Field During Laser Keyhole Welding of 304 Stainless Steel Sheet
,”
Opt. Laser Technol.
43
(
4
), pp.
870
873
.
28.
Cheng
,
B.
,
Price
,
S.
,
Lydon
,
J.
,
Cooper
,
K.
, and
Chou
,
K.
,
2014
, “
On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation
,”
ASME J. Manuf. Sci. Eng.
136
(
6
), pp.
1
12
.
29.
Shen
,
N.
, and
Chou
,
K.
,
2012
, “
Thermal Modeling of Electron Beam Additive Manufacturing Process: Powder Sintering Effects
,”
Proceedings of the ASME Manufacturing Science and Engineering Conference
,
Notre Dame, IN
,
June 4–8, 2012
.
30.
Chen
,
Y. X.
,
Wang
,
X. J.
, and
Chen
,
S. B.
,
2014
, “
The Effect of Electron Beam Energy Density on Temperature Field for Electron Beam Melting
,”
Adv. Mater. Res
,
900
, pp.
631
638
.
31.
Romano
,
J.
,
Ladani
,
L.
, and
Sadowski
,
M.
,
2015
, “
Thermal Modeling of Laser Based Additive Manufacturing Processes Within Common Materials
,”
Procedia Manuf.
,
1
, pp.
238
250
.
32.
Zäh
,
M. F.
, and
Lutzmann
,
S.
,
2010
, “
Modelling and Simulation of Electron Beam Melting
,”
Prod. Eng. Res. Dev.
,
4
(
1
), pp.
15
23
.
33.
Andreottaa
,
R.
,
Ladani
,
L.
, and
Brindley
,
W.
,
2017
, “
Finite Element Simulation of Laser Additive Melting and Solidification of Inconel 718 With Experimentally Tested Thermal Properties
,”
Finite Elem. Anal. Des.
,
135
, pp.
36
43
.
34.
Magda
,
S.
,
Ladani
,
L.
,
Brindley
,
W.
, and
Romano
,
J.
,
2017
, “
Optimizing Quality of Additively Manufactured Inconel 718 Using Powder Bed Laser Melting Process
,”
Addit. Manuf.
11
, pp.
60
70
.
35.
Ladani
,
L.
,
Romano
,
J.
,
Brindley
,
W.
, and
Burlatsky
,
S.
,
2017
, “
Effective Liquid Conductivity for Improved Simulation of Thermal Transport in Laser Beam Melting Powder Bed Technology
,”
Addit. Manuf.
,
14
, pp.
13
23
.
36.
Rai
,
R.
,
Palmer
,
T. A.
,
Elmer
,
J. W.
, and
Debroy
,
T.
,
2009
, “
Heat Transfer and Fluid Flow During Electron Beam Welding of 304L Stainless Steel Alloy
,”
Weld. J.
,
88
(
3
), pp.
54
61
.
37.
Li
,
J. F.
,
Li
,
L.
, and
Stott
,
F. H.
,
2004
, “
A Three-Dimensional Numerical Model for a Convection-Diffusion Phase Change Process During Laser Melting of Ceramic Materials
,”
Int. J. Heat Mass Transf.
,
47
(
25
), pp.
5523
5539
.
38.
Chahine
,
G.
,
2011
, “
Application of Digital Engineering in the Development of a Bio-Adaptable Dental Implant
,” Ph.D. thesis,
Southern Methodist University
,
Dallas, TX
.
39.
Attar
,
E.
,
2011
, “
Simulation of Selective Electron Beam Melting Processes
,” Ph.D. thesis,
University of Erlangen-Nürnberg
,
Germany
.
40.
Rahman
,
M. S.
,
Schilling
,
P. J.
,
Herrington
,
P. D.
, and
Chakravarty
,
U. K.
, “
Thermo-Fluid Characterizations of Ti-6Al-4V Melt Pool in Powder-Bed Electron Beam Additive Manufacturing
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Vol. 1, Advances in Aerospace Technology
,
Phoenix, AZ
,
Nov. 11–17, 2016
.
41.
Rahman
,
M. S.
,
Schilling
,
P. J.
,
Herrington
,
P. D.
, and
Chakravarty
,
U. K.
, “
Thermal Analysis of Electron Beam Additive Manufacturing Using Ti-6Al-4V Powder-Bed
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Vol. 1, Advances in Aerospace Technology
,
Tampa, FL
,
Nov. 3–9, 2017
.
42.
Rahman
,
M. S.
,
Schilling
,
P. J.
,
Herrington
,
P. D.
, and
Chakravarty
,
U. K.
, “
A Comparative Study Between Selective Laser Melting and Electron Beam Additive Manufacturing Based on Thermal Modeling
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Vol. 1, Advances in Aerospace Technology
,
Pittsburgh, PA
,
Nov. 9–15, 2018
.
43.
Jamshidinia
,
M.
,
Kong
,
F.
, and
Kovacevic
,
R.
, “
Temperature Distribution and Fluid Flow Modeling of Electron Beam Melting® (EBM)
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Vol. 7, Part D, Fluid and Heat Transfer
,
Houston, TX
,
Nov. 9–15, 2012
.
44.
Jamshidinia
,
M.
,
Kong
,
F.
, and
Kovacevic
,
R.
,
2013
, “
Numerical Modeling of Heat Distribution in the Electron Beam Melting of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061010
.
45.
Yang
,
J.
,
Sun
,
S.
,
Brandt
,
M.
, and
Yan
,
W.
,
2010
, “
Experimental Investigation and 3D Finite Element Prediction of the Heat Affected Zone During Laser Assisted Machining of Ti-6Al-4V Alloy
,”
J. Mater. Process. Technol.
,
210
(
15
), pp.
2215
2222
.
46.
Lin
,
T. H.
,
Watson
,
J. S.
, and
Fisher
,
P. W.
,
1985
, “
Thermal Conductivity of Iron-Titanium Powders
,”
J. Chem. Eng. Data
,
30
(
4
), pp.
369
372
.
47.
Sih
,
S. S.
, and
Barlow
,
J. W.
,
2004
, “
The Prediction of the Emissivity and Thermal Conductivity of Powder Beds
,”
Part. Sci. Technol.
22
(
3
), pp.
291
304
.
48.
Kolossov
,
S.
,
Boillat
,
E.
,
Glardon
,
R.
,
Fischer
,
P.
, and
Locher
,
M.
,
2004
, “
3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
2–3
), pp.
117
123
.
49.
Patil
,
R. B.
, and
Yadava
,
V.
,
2007
, “
Finite Element Analysis of Temperature Distribution in Single Metallic Powder Layer During Metal Laser Sintering
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1069
1080
.
50.
Li
,
J.
,
Johnson
,
W.
, and
Rhim
,
W.
,
2006
, “
Thermal Expansion of Liquid Ti-6Al-4V Measured by Electrostatic Levitation
,”
Appl. Phys. Lett.
89
(
11
), pp.
1
2
.
51.
Mills
,
K. C.
,
2002
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
, 1st Ed,
Woodhead Publishing
,
Cambridge, UK
, pp.
211
216
.
52.
Arce
,
A. N.
,
2012
, “
Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys
,” Ph.D. thesis,
North Carolina State University
,
Raleigh, NC
.
53.
Dai
,
K.
,
Li
,
X.
, and
Shaw
,
L.
,
2004
, “
Thermal Analysis of Laser-Densified Dental Porcelain Bodies: Modeling and Experiments
,”
ASME J. Heat Transf.
,
126
(
5
), pp.
818
825
.
54.
Rai
,
R.
,
Burgardt
,
P.
,
Milewski
,
J.
,
Lienert
,
T.
, and
DebRoy
,
T.
,
2009
, “
Heat Transfer and Fluid Flow During Electron Beam Welding of 21Cr-6Ni-9Mn Steel and Ti-6Al-4V Alloy
,”
J. Phys. D: Appl. Phys.
,
42
(
2
), pp.
1
12
, 02550.
55.
Esen
,
A.
, and
Kutluay
,
S.
,
2004
, “
A Numerical Solution of the Stefan Problem With a Neumann-Type Boundary Condition by Enthalpy Method
,”
Appl. Math. Comput.
148
(
2
), pp.
321
329
.
56.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
,
1982
, “
High-Re Solutions for Incompressible Flow Using the Navier–Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
48
(
3
), pp.
387
411
.
You do not currently have access to this content.