A microstructure sensitive criterion for dwell fatigue crack initiation in polycrystalline alloy Ti-6242 is proposed in this paper. Local stress peaks due to load shedding from time dependent plastic deformation fields in neighboring grains are held responsible for crack initiation in dwell fatigue. An accurately calibrated and experimentally validated crystal plasticity finite element (FE) model is employed for predicting slip system level stresses and strains. Vital microstructural features related to the grain morphology and crystallographic orientations are accounted for in the FE model by construction of microstructures that are statistically equivalent to those observed in orientation imaging microscopy scans. The output of the finite element method model is used to evaluate the crack initiation condition in the postprocessing stage. The functional form of the criterion is motivated from the similarities in the stress fields and crack evolution criteria ahead of a crack tip and dislocation pileup. The criterion is calibrated and validated by using experimental data obtained from ultrasonic crack monitoring techniques. It is then used to predict the variation in dwell fatigue lifetime for critical microstructural conditions. The studies are extended to field experiments on β forged Ti-6242. Macroscopic aspects of loading are explored for their effect on dwell fatigue life of Ti-6242.

1.
Sinha
,
V.
,
Mills
,
M. J.
, and
Williams
,
J. C.
, 2004, “
Understanding the Contributions of Normal Fatigue and Static Loading to the Dwell Fatigue in a Near-Alpha Titanium Alloy
,”
Metall. Trans. A
,
35
, pp.
3141
3148
. 0360-2133
2.
Inman
,
M. A.
, and
Gilmore
,
C. M.
, 1979, “
Room Temperature Creep of Ti-6Al-4V
,”
Metall. Trans. A
,
10A
, pp.
419
425
. 0360-2133
3.
Hasija
,
V.
,
Ghosh
,
S.
,
Mills
,
M. J.
, and
Joseph
,
D. S.
, 2003, “
Modeling Deformation and Creep in Ti-6Al Alloys With Experimental Validation
,”
Acta Mater.
1359-6454,
51
, pp.
4533
4549
.
4.
Bache
,
M. R.
, 2003, “
A Review of Dwell Sensitive Fatigue in Titanium Alloys: The Role of Microstructure, Texture and Operating Conditions
,”
Int. J. Fatigue
0142-1123,
25
, pp.
1079
1087
.
5.
Woodfield
,
A. P.
,
Gorman
,
M. D.
,
Corderman
,
R. R.
,
Sutliff
,
J. A.
, and
Yamron
,
B.
, 1995, “
Effect of Microstructure on Dwell Fatigue Behaviour of Ti-6242
,”
Titanium ’95 Science and Technology
,
The Minerals, Metals and Materials Society
,
Warrendale, PA
, pp.
1116
1124
.
6.
Rokhlin
,
S.
,
Kim
,
J. Y.
, and
Zoofan
,
B.
, 2005, unpublished.
7.
Deka
,
D.
,
Joseph
,
D. S.
,
Ghosh
,
S.
, and
Mills
,
M. J.
, 2006, “
Crystal Plasticity Modeling of Deformation and Creep in Polycrystalline Ti-6242
,”
Metall. Mater. Trans. A
,
37
, pp.
1371
1388
. 1073-5623
8.
Venkataramani
,
G.
,
Deka
,
D.
, and
Ghosh
,
S.
, 2006, “
Crystal Plasticity Based FE Model for Understanding Microstructural Effects on Creep and Dwell Fatigue in Ti-6242
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
356
365
.
9.
Venkatramani
,
G.
,
Ghosh
,
S.
, and
Mills
,
M. J.
, 2007, “
A Size Dependent Crystal Plasticity Finite Element Model for Creep and Load-Shedding in Polycrystalline Titanium Alloys
,”
Acta Mater.
,
55
, pp.
3971
3986
. 1359-6454
10.
Ghosh
,
S.
,
Bhandari
,
Y.
, and
Groeber
,
M.
, 2008, “
CAD Based Reconstruction of Three Dimensional Polycrystalline Microstructures From FIB Generated Serial Sections
,”
Comput.-Aided Des.
0010-4485,
40
(
3
), pp.
293
310
.
11.
Groeber
,
M.
,
Ghosh
,
S.
,
Uchic
,
M. D.
, and
Dimiduk
,
D. M.
, 2008, “
A Framework for Automated Analysis and Representation of 3D Polycrystalline Microstructures, Part 2: Synthetic Structure Generation
,”
Acta Mater.
,
56
(
6
), pp.
1274
1287
. 1359-6454
12.
Groeber
,
M. A.
, 2007, “
Development of an Automated Characterization-Representation Framework for the Modeling of Polycrystalline Materials in 3D
,” Ph.D. thesis, Ohio State University, Columbus, OH.
13.
Stroh
,
A. N.
, 1954, “
The Formation of Cracks as a Result of Plastic Flow
,”
Proc. R. Soc. London, Ser. A
0950-1207,
223
, pp.
404
414
.
14.
Gao
,
Q.
, and
Liu
,
H. W.
, 1990, “
Characterization of the Tip Field of a Discrete Dislocation Pileup for the Development of Physically Based Micromechanics
,”
Metall. Trans. A
,
21
, pp.
2087
2089
. 0360-2133
15.
Hall
J.
, 2006, “
Cold Dwell Fatigue Debit in Ti-6242: Honeywell Approach
,” Honeywell ES&S, unpublished.
16.
Manchiraju
,
S.
,
Asai
,
M.
, and
Ghosh
,
S.
, 2007, “
A Dual-Time-Scale Finite Element Model for Simulating Cyclic Deformation of Polycrystalline Alloys
,”
J. Strain Anal. Eng. Des.
0309-3247,
42
, pp.
183
200
.
17.
Sinha
,
V.
,
Mills
,
M. J.
, and
Williams
,
J. C.
, 2006, “
Crystallography of Fracture Facets in a Near Alpha Titanium Alloy
,”
Metall. Mater. Trans. A
,
37
, pp.
2015
2026
. 1073-5623
18.
Sinha
,
V.
,
Spowart
,
J. E.
,
Mills
,
M. J.
, and
Williams
,
J. C.
, 2006, “
Observations on the Faceted Initiation Site in the Dwell-Fatigue Tested Ti-6242 Alloy: Crystallographic Orientation and Size Effects
,”
Metall. Mater. Trans. A
,
37
, pp.
1507
1518
. 1073-5623
19.
Williams
,
J. C.
,
Ghosh
,
S.
,
Mills
,
M. J.
, and
Rokhlin
,
S.
, 2006, “
The Evaluation of Cold Dwell Fatigue in Ti-6242
,” FAA Report Summary.
20.
Venkataramani
,
G.
,
Kirane
,
K.
, and
Ghosh
,
S.
, 2008, “
Microstructural Parameters Affecting Creep Induced Load Shedding in Ti-6242 by a Size Dependent Crystal Plasticity FE Model
,”
Int. J. Plast.
,
24
, pp.
428
454
. 0749-6419
21.
Suresh
,
S.
, 1991,
Fatigue of Materials
,
Cambridge University Press
,
Cambridge, UK
.
22.
Baker
,
I.
, 1999, “
Improving the Ductility of Intermetallic Compounds by Particle-Induced Slip Homogenization
,”
Scr. Mater.
,
41
(
4
), pp.
409
414
. 1359-6462
23.
Smith
,
E.
, 1979, “
Dislocations and Cracks
,”
Dislocations in Solids
,
F. R. N.
Nabarro
, ed.,
North Holland
,
Amsterdam, The Netherlands
.
24.
Tanaka
,
K.
, and
Mura
,
T.
, 1981, “
A Dislocation Model for Fatigue Crack Initiation
,”
ASME J. Appl. Mech.
,
48
, pp.
97
103
. 0021-8936
25.
Griffith
A. A.
, 1920, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
221
, pp.
163
198
.
26.
Ruiz
,
G.
,
Pandolfi
,
A.
, and
Ortiz
,
M.
, 2001, “
Three-Dimensional Cohesive Modeling of Dynamic Mixed Mode Fracture
,”
Int. J. Numer. Methods Eng.
0029-5981,
52
, pp.
97
120
.
27.
Camacho
,
G. T.
, and
Ortiz
,
M.
, 1996, “
Computational Modeling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
0020-7683,
33
(
20–22
), pp.
2899
2938
.
28.
Parvatareddy
,
H.
, and
Dillard
,
D. A.
, 1999, “
“Effect of Mode-Mixity on the Fracture Toughness of Ti-6Al-4V/FM-5 Adhesive Joints
,”
Int. J. Fract.
0376-9429,
96
, pp.
215
228
.
29.
Lardner
,
R. W.
, 1974,
Mathematical Theory of Dislocations and Fracture
,
University of Toronto Press
,
Toronto, Canada
.
30.
Huang
,
Y.
,
Qu
,
S.
,
Hwang
,
K. C.
,
Li
,
M.
, and
Gao
,
H.
, 2004, “
A Conventional Theory of Mechanism-Based Strain Gradient Plasticity
,”
Int. J. Plast.
0749-6419,
20
, pp.
753
782
.
31.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
, 1993, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
41
(
12
), pp.
1825
1857
.
32.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
, 1999, “
Mechanism-Based Strain Gradient Plasticity—I: Theory
,”
J. Mech. Phys. Solids
0022-5096,
47
(
6
), pp.
1239
1263
.
33.
Neeraj
,
T.
,
Hou
,
D. H.
,
Daehn
,
G. S.
, and
Mills
,
M. J.
, 2000, “
Phenomenological and Microstructural Analysis of Room Temperature Creep in Titanium Alloys
,”
Acta Mater.
,
48
, pp.
1225
1238
. 1359-6454
34.
Engelen
,
R. A. B.
,
Geers
,
M. G. D.
, and
Baaijens
,
F. P. T.
, 2003, “
Nonlocal Implicit Gradient-Enhanced Elasto-Plasticity for the Modeling of Softening Behavior
,”
Int. J. Plast.
0749-6419,
19
, pp.
403
433
.
35.
Odegard
,
B. C.
, and
Thompson
,
A. W.
, 1974, “
Low Temperature Creep of Ti-6Al-4V
,”
Metall. Trans.
,
5
, pp.
1207
1213
. 0026-086X
You do not currently have access to this content.