Abstract

In this work, we show the development of a numerical model to investigate the 3D interactions between microwave radiation and basalt, granite, and sandstone rock samples. In particular, we assign sample heterogeneity based on the Weibull statistical distribution, and invoke a damage model for elemental tensile and compressive stresses based on the maximum tensile stress and the Mohr–Coulomb theories, respectively. Model implementation is facilitated by the use of comsol for use in coupling the electromagnetic, thermal, and solid displacement relations. Various parametric studies are conducted related to variable input power and waveguide port alignment, with model validation conducted with respect to damage resulting from a uniaxial compression test. The results indicate that relatively high induced temperatures will promote damage potential, but its impact must be placed within the context of the sample strength to quantify the true potential damage evolution of a given rock mass. As observed herein, a mechanically weaker rock may be prone to mechanical damage; however, it may also possess a relatively large relative permittivity, enabling it to absorb the least amount of microwave radiation thus yielding comparatively low overall damage profiles compared to a more mechanically competent rock mass.

References

1.
Tromans
,
D.
,
2008
, “
Mineral Comminution: Energy Efficiency Considerations
,”
Miner. Eng.
,
21
(
8
), pp.
613
620
.
2.
DOE
,
2007
, “
Mining Industry Energy Bandwidth Study
,” http://www.energy.gov/manufacturing/resources/mining/pdfs/mining_bandwidth.pdf
3.
Fuerstenau
,
D. W.
, and
Abouzeid
,
A.-Z. M.
,
2002
, “
The Energy Efficiency of Ball Milling in Comminution
,”
Int. J. Miner. Process.
,
67
(
1–4
), pp.
161
185
.
4.
Cho
,
J. W.
,
Jeon
,
S.
,
Jeong
,
H. Y.
, and
Chang
,
S. H.
,
2013
, “
Evaluation of Cutting Efficiency During TBM Disc Cutter Excavation Within a Korean Granitic Rock Using Linear-Cutting Machine Testing and Photogrammetric Measurement
,”
Tunn. Undergr. Space Technol.
,
35
(
1
), pp.
37
54
.
5.
Gertsch
,
R.
,
Gertsch
,
L.
, and
Rostami
,
J.
,
2007
, “
Disc Cutting Tests in Colorado Red Granite: Implications for TBM Performance Prediction
,”
Int. J. Rock Mech. Min. Sci.
,
44
(
2
), pp.
238
246
.
6.
Gong
,
Q. M.
, and
Zhao
,
J.
,
2007
, “
Influence of Rock Brittleness on TBM Penetration Rate in Singapore Granite
,”
Tunn. Undergr. Space Technol.
,
22
(
3
), pp.
317
324
.
7.
Haque
,
K. E.
,
1999
, “
Microwave Energy for Mineral Treatment Processes—A Brief Review
,”
Int. J. Miner. Process
,
57
(
1
), pp.
1
24
.
8.
Kingman
,
S. W.
, and
Rowson
,
N. A.
,
1998
, “
Microwave Treatment of Minerals-A Review
,”
Miner. Eng.
,
11
(
11
), pp.
1081
1087
.
9.
Kingman
,
S. W.
,
Vorster
,
W.
, and
Rowson
,
N. A.
,
2000
, “
The Influence of Mineralogy on Microwave Assisted Grinding
,”
Miner. Eng.
,
13
(
3
), pp.
313
327
.
10.
Acevedo
,
L.
,
Usón
,
S.
, and
Uche
,
J.
,
2015
, “
Numerical Study of Cullet Glass Subjected to Microwave Heating and SiC Susceptor Effects. Part I: Combined Electric and Thermal Model
,”
Energy Convers. Manage.
,
97
(
1
), pp.
439
457
.
11.
Jones
,
D. A.
,
Lelyveld
,
T.
,
Mavrofidis
,
S.
,
Kingman
,
S.
, and
Miles
,
N.
,
2002
, “
Microwave Heating Applications in Environmental Engineering—A Review
,”
Resour. Conserv. Recycl
,
34
(
2
), pp.
75
90
.
12.
Ozkan
,
I. A.
,
Akbudak
,
B.
, and
Akbudak
,
N.
,
2007
, “
Microwave Drying Characteristics of Spinach
,”
J. Food Eng.
,
78
(
2
), pp.
577
583
.
13.
Hassani
,
F.
,
Nekoovaght
,
P. M.
, and
Gharib
,
N.
,
2016
, “
The Influence of Microwave Irradiation on Rocks for Microwave Assisted Underground Excavation
,”
J. Rock Mech. Geotech. Eng.
,
8
(
1
), pp.
1
15
.
14.
Nicco
,
M.
,
Holley
,
E. A.
,
Hartlieb
,
P.
,
Kaunda
,
R.
, and
Nelson
,
P. P.
,
2018
, “
Methods for Characterizing Cracks Induced in Rock
,”
Rock Mech. Rock Eng.
,
51
(
7
), pp.
2075
2093
.
15.
Hartlieb
,
P.
,
Leindl
,
M.
, and
Kuchar
,
F.
,
2012
, “
Damage of Basalt Induced by Microwave Irradiation
,”
Int. J. Miner. Eng.
,
31
(
1
), pp.
82
89
.
16.
Chen
,
T. T.
,
Dutrizac
,
J. E.
,
Haque
,
K. E.
,
Wyslouzil
,
W.
, and
Kashyap
,
S.
,
1984
, “
The Relative Transparency of Minerals to Microwave Radiation
,”
Can. Metall. Q. J.
,
23
(
1
), pp.
349
351
.
17.
Clemens
,
J.
, and
Saltiel
,
C.
,
1996
, “
Numerical Modeling of Materials Processing in Microwave Furnaces
,”
Int. J. Heat Mass Transf.
,
39
(
8
), pp.
1665
1675
.
18.
García
,
E.
,
Amaya
,
I.
, and
Correa
,
R.
,
2017
, “
Estimation of Thermal Properties of a Solid Sample During a Microwave Heating Process
,”
Appl. Therm. Eng.
,
129
(
1
), pp.
587
595
.
19.
Tada
,
S.
,
Echigo
,
R.
, and
Yoshida
,
H.
,
1998
, “
Numerical Analysis of Electromagnetic Wave in a Partially Loaded Microwave Applicator
,”
Int. J. Heat Mass Transf.
,
41
(
4–5
), pp.
709
718
.
20.
Wang
,
Y.
, and
Djordjevic
,
N.
,
2014
, “
Thermal Stress FEM Analysis of Rock With Microwave Energy
,”
Int. J. Miner. Process.
,
130
(
1
), pp.
74
81
.
21.
COMSOL Multiphysics Reference Manual, Version 5.5, 2019
.
22.
Smith
,
M.
,
2009
,
ABAQUS/Standard User's Manual, Version 6.9
,
Dassault Systemes Simulia Corp
.
23.
CSC –IT Center for Science LTD
.,
2020
Elmer
,” Version 9.0
,
https://www.csc.fi/web/elmer
24.
OpenFOAM
,
2007,
The Open Source CFD Toolbox
,” http://www.opencfd.co.uk/openfoam.html
25.
Schunk
,
P. R.
,
2013
, “
GOMA 6.0: A Full-Newton Finite Element Program for Free and Moving Boundary Problems With Coupled Fluid/Solid Momentum, Energy, Mass, and Chemical Species Transport : User’s Guide
”.
26.
Li
,
H.
,
Shi
,
S.
,
Lin
,
B.
,
Lu
,
J.
,
Lu
,
Y.
,
Ye
,
Q.
,
Wang
,
Z.
,
Hong
,
Y.
, and
Zhu
,
X.
,
2019
, “
A Fully Coupled Electromagnetic, Heat Transfer and Multiphase Porous Media Model for Microwave Heating of Coal
,”
Fuel Process. Technol.
,
189
(
1
), pp.
49
61
.
27.
Toifl
,
M.
,
Meisels
,
R.
,
Hartlieb
,
P.
,
Kuchar
,
F.
, and
Antretter
,
T.
,
2016
, “
3D Numerical Study on Microwave Induced Stresses in Inhomogeneous Hard Rocks
,”
Miner. Eng.
,
90
(
Suppl. C
), pp.
29
42
.
28.
Huang
,
J.
,
Xu
,
G.
,
Hu
,
G.
,
Kizil
,
M.
, and
Chen
,
Z.
,
2018
, “
A Coupled Electromagnetic Irradiation, Heat and Mass Transfer Model for Microwave Heating and Its Numerical Simulation on Coal
,”
Fuel Process. Technol.
,
177
(
1
), pp.
237
245
.
29.
Xu
,
T.
,
Yuan
,
Y.
,
Heap
,
M. J.
,
Zhou
,
G.
,
Perera
,
M. S. A.
, and
Ranjith
,
P. G.
,
2021
, “
Microwave-Assisted Damage and Fracturing of Hard Rocks and Its Implications for Effective Mineral Resources Recovery
,”
Miner. Eng.
,
160
(
1
), p.
106663
.
30.
Yang
,
S.-Q.
,
Jing
,
H.-W.
, and
Cheng
,
L.
,
2014
, “
Influences of Pore Pressure on Short-Term and Creep Mechanical Behavior of Red Sandstone
,”
Eng Geol.
,
179
(
1
), pp.
10
23
.
31.
Hartlieb
,
P.
,
Toifl
,
M.
,
Kuchar
,
F.
,
Meisels
,
R.
, and
Antretter
,
T.
,
2016
, “
Thermo-Physical Properties of Selected Hard Rocks and Their Relation to Microwave-Assisted Comminution
,”
Miner. Eng.
,
91
(
1
), pp.
34
41
.
32.
Glover
,
P. W. J.
,
2015
, “Geophysical Properties of the Near Surface Earth:Electrical Properties,”
Earth Systems and Environmental Sciences: Treatise on Geophysics
, 2nd ed., Vol.
11
,
Elsevier
, pp.
89
137
.
33.
Logo
,
B. A.
, and
Vasarhelyi
,
B.
,
2019
, “
Estimation of the Poisson’s Rate of the Intact Rock in the Function of the Rigidity
,”
Periodica Polytech. Civil Eng.
,
63
(
4
), pp.
1030
1037
.
34.
Meredith
,
R. J.
,
1998
,
Engineers’ Handbook of Industrial Microwave Heating
,
Institution of Electrical Engineers
,
London, UK
.
35.
Lai
,
C.-D.
,
Murthy
,
D. N.
, and
Xie
,
M.
,
2006
, “Weibull Distributions and Their Applications,” Springer Handbook MS ID: hb06-a2.
You do not currently have access to this content.