The mechanical behavior of closed-cell aluminum foam composites under different compressive loadings has been investigated. Closed-cell aluminum foam composites made using the liquid metallurgy route were reinforced with multiwalled carbon nanotubes (CNTs) with different concentrations, namely, 1%, 2%, and 3% by weight. The reinforced foams were experimentally tested under dynamic compression using the split Hopkinson pressure bar (SHPB) system over a range of strain rates (up to 2200 s−1). For comparison, aluminum foams were also tested under quasi-static compression. It was observed that closed-cell aluminum foam composites are strain rate sensitive. The mechanical properties of CNT reinforced Al-foams, namely, yield stress, plateau stress, and energy absorption capacity are significantly higher than that of monolithic Al-foam under both low and high strain rates.

References

1.
De Meller
,
M. A.
,
1925
, “
Produit Métall. pour l'obtention d'objets Laminés
,” French Patent,
615
(147), p. 1926.
2.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
3.
Banhart
,
J.
, and
Seeliger
,
H. W.
,
2008
, “
Aluminium Foam Sandwich Panels: Manufacture, Metallurgy and Applications
,”
Adv. Eng. Mater.
,
10
(
9
), pp.
793
802
.
4.
Fuganti
,
B. A.
, and
Lorenzi
,
L.
,
2000
, “
Aluminium Foam for Automotive Applications
,”
Adv. Eng. Mater.
,
2
(
4
), pp.
200
204
.
5.
Srinath
,
G.
,
Vadiraj
,
A.
,
Balachandran
,
G.
,
Sahu
,
S. N.
, and
Gokhale
,
A. A.
,
2010
, “
Characteristics of Aluminium Metal Foam for Automotive Applications
,”
Trans. Indian Inst. Met.
,
63
(
5
), pp.
765
772
.
6.
GDA
,
2014
, “
A High-Speed Train Made of Aluminium Foam
,” Gesamtverband der Aluminiumindustrie, Germany, accessed May 3, 2016, http://www.aluinfo.de/index.php/gda-news-en/items/a-high-speed-train-made-of-aluminium-foam.html (discontinued).
7.
Ashby
,
M. F.
, and
Medalist
,
R. F. M.
,
1983
, “
The Mechanical Properties of Cellular Solids
,”
Metall. Trans. A
,
14
(
9
), pp.
1755
1769
.
8.
Bhat
,
B.
, and
Wang
,
T. G.
,
1990
, “
A Comparison of Mechanical Properties of Some Foams and Honeycombs
,”
J. Mater. Sci.
,
25
(
12
), pp.
5157
5162
.
9.
Simone
,
A. E.
, and
Gibson
,
L. J.
,
1997
, “
Efficient Structural Components Using Porous Metals
,”
Mater. Sci. Eng. A
,
229
(
1–2
), pp.
55
62
.
10.
Gibson
,
L. J.
,
2000
, “
Mechanical Behavior of Metallic Foams
,”
Annu. Rev. Mater. Sci.
,
30
(
1
), pp.
191
227
.
11.
Mukai
,
T.
,
Kanahashi
,
H.
,
Miyoshi
,
T.
,
Mabuchi
,
M.
,
Nieh
,
T. G.
, and
Higashi
,
K.
,
1999
, “
Experimental Study of Energy Absorption in a Close-Celled Aluminum Foam Under Dynamic Loading
,”
Scr. Mater.
,
40
(
8
), pp.
921
927
.
12.
Dannemann
,
K. A.
, and
Lankford
,
J.
,
2000
, “
High Strain Rate Compression of Closed-Cell Aluminium Foams
,”
Mater. Sci. Eng. A
,
293
(
1–2
), pp.
157
164
.
13.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
High Strain Rate Compressive Behaviour of Aluminium Alloy Foams
,”
Int. J. Impact Eng.
,
24
(
3
), pp.
277
298
.
14.
Raj
,
R. E.
,
Parameswaran
,
V.
, and
Daniel
,
B. S. S.
,
2009
, “
Comparison of Quasi-Static and Dynamic Compression Behavior of Closed-Cell Aluminum Foam
,”
Mater. Sci. Eng. A
,
526
(
1–2
), pp.
11
15
.
15.
Zhao
,
H.
,
Elnasri
,
I.
, and
Abdennadher
,
S.
,
2005
, “
An Experimental Study on the Behaviour Under Impact Loading of Metallic Cellular Materials
,”
Int. J. Mech. Sci.
,
47
(
4–5
), pp.
757
774
.
16.
Mukai
,
T.
,
Miyoshi
,
T.
,
Nakano
,
S.
,
Somekawa
,
H.
, and
Higashi
,
K.
,
2006
, “
Compressive Response of a Closed-Cell Aluminum Foam at High Strain Rate
,”
Scr. Mater.
,
54
(
4
), pp.
533
537
.
17.
Kang
,
Y.
,
Zhang
,
J.
, and
Tan
,
J.
,
2007
, “
Compressive Behavior of Aluminum Foams at Low and High Strain Rates
,”
J. Cent. South Univ. Technol.
,
14
(
1
), pp.
301
305
.
18.
Mondal
,
D. P.
,
Goel
,
M. D.
, and
Das
,
S.
,
2009
, “
Effect of Strain Rate and Relative Density on Compressive Deformation Behaviour of Closed Cell Aluminum-Fly Ash Composite Foam
,”
Mater. Des.
,
30
(
4
), pp.
1268
1274
.
19.
Cady
,
C. M.
,
Gray
,
G. T.
,
Liu
,
C.
,
Lovato
,
M. L.
, and
Mukai
,
T.
,
2009
, “
Compressive Properties of a Closed-Cell Aluminum Foam as a Function of Strain Rate and Temperature
,”
Mater. Sci. Eng. A
,
525
(
1–2
), pp.
1
6
.
20.
Irausquín
,
I.
,
Pérez-Castellanos
,
J. L.
,
Miranda
,
V.
, and
Teixeira-Dias
,
F.
,
2013
, “
Evaluation of the Effect of the Strain Rate on the Compressive Response of a Closed-Cell Aluminium Foam Using the Split Hopkinson Pressure Bar Test
,”
Mater. Des.
,
47
, pp.
698
705
.
21.
Mondal
,
D. P.
,
Goel
,
M. D.
, and
Das
,
S.
,
2009
, “
Compressive Deformation and Energy Absorption Characteristics of Closed Cell Aluminum-Fly Ash Particle Composite Foam
,”
Mater. Sci. Eng. A
,
507
(
1–2
), pp.
102
109
.
22.
Ravi Kumar
,
N. V.
,
Ramachandra Rao
,
N.
,
Sudhakar
,
B.
, and
Gokhale
,
A. A.
,
2010
, “
Foaming Experiments on LM25 Alloy Reinforced With SiC Particulates
,”
Mater. Sci. Eng. A
,
527
(
21–22
), pp.
6082
6090
.
23.
Mu
,
Y.
,
Yao
,
G.
,
Cao
,
Z.
,
Luo
,
H.
, and
Zu
,
G.
,
2011
, “
Strain-Rate Effects on the Compressive Response of Closed-Cell Copper-Coated Carbon Fiber/Aluminum Composite Foam
,”
Scr. Mater.
,
64
(
1
), pp.
61
64
.
24.
Esmaeelzadeh
,
S.
,
Simchi
,
A.
, and
Lehmhus
,
D.
,
2006
, “
Effect of Ceramic Particle Addition on the Foaming Behavior, Cell Structure and Mechanical Properties of P/M AlSi7 Foam
,”
Mater. Sci. Eng. A
,
424
(
1–2
), pp.
290
299
.
25.
Sarajan
,
Z.
, and
Sedigh
,
M.
,
2009
, “
Influences of Titanium Hydride (TiH2) Content and Holding Temperature in Foamed Pure Aluminum
,”
Mater. Manuf. Process.
,
24
(
5
), pp.
590
593
.
26.
Mukherjee
,
M.
,
Ramamurty
,
U.
,
Garcia-Moreno
,
F.
, and
Banhart
,
J.
,
2010
, “
The Effect of Cooling Rate on the Structure and Properties of Closed-Cell Aluminium Foams
,”
Acta Mater.
,
58
(
15
), pp.
5031
5042
.
27.
Duarte
,
I.
,
Ventura
,
E.
,
Olhero
,
S.
, and
Ferreira
,
J. M.
,
2015
, “
A Novel Approach to Prepare Aluminium-Alloy Foams Reinforced by Carbon-Nanotubes
,”
Mater. Lett.
,
160
, pp.
162
166
.
28.
Wang
,
J.
,
Yang
,
X.
,
Zhang
,
M.
,
Li
,
J.
,
Shi
,
C.
,
Zhao
,
N.
, and
Zou
,
T.
,
2015
, “
A Novel Approach to Obtain In-Situ Growth Carbon Nanotube Reinforced Aluminum Foams With Enhanced Properties
,”
Mater. Lett.
,
161
, pp.
763
766
.
29.
Yadav
,
V.
, and
Harimkar
,
S. P.
,
2011
, “
Microstructure and Properties of Spark Plasma Sintered Carbon Nanotube Reinforced Aluminum Matrix Composites
,”
Adv. Eng. Mater.
,
13
(
12
), pp.
1128
1134
.
30.
Jagannatham
,
M.
,
Sankaran
,
S.
, and
Haridoss
,
P.
,
2015
, “
Microstructure and Mechanical Behavior of Copper Coated Multiwall Carbon Nanotubes Reinforced Aluminum Composites
,”
Mater. Sci. Eng. A
,
638
, pp.
197
207
.
31.
Hamada
,
T.
,
Kanahashi
,
H.
,
Miyoshi
,
T.
, and
Kanetake
,
N.
,
2009
, “
Effects of the Strain Rate and Alloying on the Compression Characteristics of Closed Cell Aluminum Foams
,”
Mater. Trans.
,
50
(
6
), pp.
1418
1425
.
32.
ASTM
,
2011
, “
Standard Test Methods for Determining Average Grain Size
,” ASTM, West Conshohocken, PA, Standard No.
E112-10
.
33.
Chen
,
W.
, and
Song
,
B.
,
2011
,
Spilt Hopkinson (Kolsky)Bar: Design, Testing and Applications
,
Springer
,
New York
.
34.
Gama
,
B. A.
,
Lopatnikov
,
S. L.
, and
Gillespie
,
J. W.
,
2004
, “
Hopkinson Bar Experimental Technique: A Critical Review
,”
ASME Appl. Mech. Rev.
,
57
(
4
), pp.
223
250
.
35.
Meyers
,
M. A.
,
1994
,
Dynamic Behavior of Materials
,
Wiley
, New York.
36.
Subhash
,
G.
, and
Ravichandran
,
G.
,
2000
, “
Split-Hopkinson Pressure Bar Testing of Ceramics
,”
ASM Handbook
(Mechanical Testing and Evaluation), 8th ed.,
ASM International
,
Materials Park, OH
, pp.
497
504
.
37.
Frew
,
D. J.
,
Forrestal
,
M. J.
, and
Chen
,
W. W.
,
2002
, “
Pulse Shaping Techniques for Testing Brittle Materials With a Split Hopkinson Pressure Bar
,”
Exp. Mech.
,
42
(
1
), pp.
93
106
.
38.
Vecchio
,
K. S.
, and
Jiang
,
F.
,
2007
, “
Improved Pulse Shaping to Achieve Constant Strain Rate and Stress Equilibrium in Split-Hopkinson Pressure Bar Testing
,”
Metall. Mater. Trans. A
,
38
(
11
), pp.
2655
2665
.
39.
Khanna
,
S. K.
, and
Phan
,
H. T. T.
,
2015
, “
High Strain Rate Behavior of Graphene Reinforced Polyurethane Composites
,”
ASME J. Eng. Mater. Technol.
,
137
(
2
), p.
021005
.
You do not currently have access to this content.