Evolving dislocation-density pile-ups at grain-boundaries (GBs) spanning a wide range of coincident site lattice (CSL) and random GB misorientations in face-centered cubic (fcc) bicrystals and polycrystalline aggregates has been investigated. A dislocation-density GB interaction scheme coupled to a dislocation-density-based crystalline plasticity formulation was used in a nonlinear finite element (FE) framework to understand how different GB orientations and GB-dislocation-density interactions affect local and overall behavior. An effective Burger's vector of residual dislocations was obtained for fcc bicrystals and compared with molecular dynamics (MDs) predictions of static GB energy, as well as dislocation-density transmission at GB interfaces. Dislocation-density pile-ups and accumulations of residual dislocations at GBs and triple junctions (TJs) were analyzed for a polycrystalline copper aggregate with Σ1, Σ3, Σ7, Σ13, and Σ21 CSLs and random high-angle GBs to understand and predict the effects of GB misorientation on pile-up formation and evolution. The predictions indicate that dislocation-density pile-ups occur at GBs with significantly misoriented slip systems and large residual Burger's vectors, such as Σ7, Σ13, and Σ21 CSLs and random high-angle GBs, and this resulted in heterogeneous inelastic deformations across the GB and local stress accumulations. GBs with low misorientations of slip systems had high transmission, no dislocation-density pile-ups, and lower stresses than the high-angle GBs. This investigation provides a fundamental understanding of how different representative GB orientations affect GB behavior, slip transmission, and dislocation-density pile-ups at a relevant microstructural scale.

References

1.
Capolungo
,
L.
,
Spearot
,
D. E.
,
Cherkaoui
,
M.
,
McDowell
,
D. L.
,
Qu
,
J.
, and
Jacob
,
K. I.
,
2007
, “
Dislocation Nucleation From Bicrystal Interfaces and Grain Boundary Ledges: Relationship to Nanocrystalline Deformation
,”
J. Mech. Phys. Solids
,
55
(
11
), pp.
2300
2327
.
2.
Lim
,
H.
,
Lee
,
M. G.
,
Kim
,
J. H.
,
Adams
,
B. L.
, and
Wagoner
,
R. H.
,
2011
, “
Simulation of Polycrystal Deformation With Grain and Grain Boundary Effects
,”
Int. J. Plast.
,
27
(
9
), pp.
1328
1354
.
3.
Zaefferer
,
S.
,
Kuo
,
J.-C.
,
Zhao
,
Z.
,
Winning
,
M.
, and
Raabe
,
D.
,
2003
, “
On the Influence of the Grain Boundary Misorientation on the Plastic Deformation of Aluminum Bicrystals
,”
Acta Mater.
,
51
(
16
), pp.
4719
4735
.
4.
Zhang
,
Z. F.
,
Wang
,
Z. G.
, and
Eckert
,
J.
,
2003
, “
What Types of Grain Boundaries Can Be Passed Through by Persistent Slip Bands?
,”
J. Mater. Res.
,
18
(
5
), pp.
1031
1034
.
5.
Shi
,
J.
, and
Zikry
,
M. A.
,
2009
, “
Grain–Boundary Interactions and Orientation Effects on Crack Behavior in Polycrystalline Aggregates
,”
Int. J. Solids Struct.
,
46
(
21
), pp.
3914
3925
.
6.
Sangid
,
M. D.
,
Ezaz
,
T.
, and
Sehitoglu
,
H.
,
2012
, “
Energetics of Residual Dislocations Associated With Slip–Twin and Slip–GBs Interactions
,”
Mater. Sci. Eng.: A
,
542
, pp.
21
30
.
7.
Kashihara
,
K.
, and
Inoko
,
F.
,
2001
, “
Effect of Piled-Up Dislocations on Strain Induced Boundary Migration (SIBM) in Deformed Aluminum Bicrystals With Originally ∑3 Twin Boundary
,”
Acta Mater.
,
49
(
15
), pp.
3051
3061
.
8.
Pan
,
Y.
,
Adams
,
B. L.
,
Olson
,
T.
, and
Panayotou
,
N.
,
1996
, “
Grain-Boundary Structure Effects on Intergranular Stress Corrosion Cracking of Alloy X-750
,”
Acta Mater.
,
44
(
12
), pp.
4685
4695
.
9.
Su
,
J.
,
Demura
,
M.
, and
Hirano
,
T.
,
2002
, “
Grain-Boundary Fracture Strength in Ni3Al Bicrystals
,”
Philos. Mag. A
,
82
(
8
), pp.
1541
1557
.
10.
Schuh
,
C. A.
,
Kumar
,
M.
, and
King
,
W. E.
,
2003
, “
Analysis of Grain Boundary Networks and Their Evolution During Grain Boundary Engineering
,”
Acta Mater.
,
51
(
3
), pp.
687
700
.
11.
Watanabe
,
T.
,
1994
, “
The Impact of Grain Boundary Character Distribution on Fracture in Polycrystals
,”
Mater. Sci. Eng.: A
,
176
(
1
), pp.
39
49
.
12.
Chiba
,
A.
,
Hanada
,
S.
,
Watanabe
,
S.
,
Abe
,
T.
, and
Obana
,
T.
,
1994
, “
Relation Between Ductility and Grain Boundary Character Distributions in Ni3Al
,”
Acta Metall. Mater.
,
42
(
5
), pp.
1733
1738
.
13.
Randle
,
V.
, and
Coleman
,
M.
,
2009
, “
A Study of Low-Strain and Medium-Strain Grain Boundary Engineering
,”
Acta Mater.
,
57
(
11
), pp.
3410
3421
.
14.
Bachurin
,
D. V.
,
Weygand
,
D.
, and
Gumbsch
,
P.
,
2010
, “
Dislocation–Grain Boundary Interaction in <111> Textured Thin Metal Films
,”
Acta Mater.
,
58
(
16
), pp.
5232
5241
.
15.
Kobayashi
,
S.
,
Tsurekawa
,
S.
, and
Watanabe
,
T.
,
2006
, “
Structure-Dependent Triple Junction Hardening and Intergranular Fracture in Molybdenum
,”
Philos. Mag.
,
86
(
33–35
), pp.
5419
5429
.
16.
Shantraj
,
P.
, and
Zikry
,
M. A.
,
2013
, “
Microstructurally Induced Fracture Nucleation and Propagation in Martensitic Steels
,”
J. Mech. Phys. Solids
,
61
(
4
), pp.
1091
1105
.
17.
Koning
,
M.
,
Miller
,
R.
,
Bulatov
,
V. V.
, and
Abraham
,
F. F.
,
2002
, “
Modelling Grain-Boundary Resistance in Intergranular Dislocation Slip Transmission
,”
Philos. Mag. A
,
82
(
13
), pp.
2511
2527
.
18.
Patriarca
,
L.
,
Abuzaid
,
W.
,
Sehitoglu
,
H.
, and
Maier
,
H. J.
,
2013
, “
Slip Transmission in bcc FeCr Polycrystal
,”
Mater. Sci. Eng.: A
,
588
, pp.
308
317
.
19.
Guo
,
Y.
,
Britton
,
T. B.
, and
Wilkinson
,
A. J.
,
2014
, “
Slip Band–Grain Boundary Interactions in Commercial-Purity Titanium
,”
Acta Mater.
,
76
, pp.
1
12
.
20.
Guo
,
Y.
,
Collins
,
D. M.
,
Tarleton
,
E.
,
Hofmann
,
F.
,
Tischler
,
J.
,
Liu
,
W.
,
Xu
,
R.
,
Wilkinson
,
A. J.
, and
Britton
,
T. B.
,
2015
, “
Measurements of Stress Fields Near a Grain Boundary: Exploring Blocked Arrays of Dislocations in 3D
,”
Acta Mater.
,
96
, pp.
229
236
.
21.
Suzuki
,
A.
,
Gigliotti
,
M. F. X.
, and
Subramanian
,
P. R.
,
2011
, “
Novel Technique for Evaluating Grain Boundary Fracture Strength in Metallic Materials
,”
Scr. Mater.
,
64
(
11
), pp.
1063
1066
.
22.
Wu
,
Q.
, and
Zikry
,
M. A.
,
2016
, “
Microstructural Modeling of Transgranular and Intergranular Fracture in Crystalline Materials With Coincident Site Lattice Grain-Boundaries: Σ3 and Σ17b Bicrystals
,”
Mater. Sci. Eng.: A
,
661
, pp.
32
39
.
23.
Zhang
,
L.
,
Lu
,
C.
, and
Tieu
,
K.
,
2016
, “
A Review on Atomistic Simulation of Grain Boundary Behaviors in Face-Centered Cubic Metals
,”
Comput. Mater. Sci.
,
118
, pp.
180
191
.
24.
Jang
,
H.
, and
Farkas
,
D.
,
2007
, “
Interaction of Lattice Dislocations With a Grain Boundary During Nanoindentation Simulation
,”
Mater. Lett.
,
61
(
3
), pp.
868
871
.
25.
Cheng
,
Y.
,
Mrovec
,
M.
, and
Gumbsch
,
P.
,
2008
, “
Crack Nucleation at the Symmetrical Tilt Grain Boundary in Tungsten
,”
Mater. Sci. Eng.: A
,
483–484
, pp.
329
332
.
26.
Sangid
,
M. D.
,
Ezaz
,
T.
,
Sehitoglu
,
H.
, and
Robertson
,
I. M.
,
2011
, “
Energy of Slip Transmission and Nucleation at Grain Boundaries
,”
Acta Mater.
,
59
(
1
), pp.
283
296
.
27.
Dewald
,
M. P.
, and
Curtin
,
W. A.
,
2007
, “
Multiscale Modelling of Dislocation/Grain-Boundary Interactions: I. Edge Dislocations Impinging on Σ11 (113) Tilt Boundary in Al
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
1
), p.
S193
.
28.
Liu
,
B.
,
Raabe
,
D.
,
Eisenlohr
,
P.
,
Roters
,
F.
,
Arsenlis
,
A.
, and
Hommes
,
G.
,
2011
, “
Dislocation Interactions and Low-Angle Grain Boundary Strengthening
,”
Acta Mater.
,
59
(
19
), pp.
7125
7134
.
29.
Liu
,
B.
,
Eisenlohr
,
P.
,
Roters
,
F.
, and
Raabe
,
D.
,
2012
, “
Simulation of Dislocation Penetration Through a General Low-Angle Grain Boundary
,”
Acta Mater.
,
60
(
13–14
), pp.
5380
5390
.
30.
Ding
,
R.
,
Gong
,
J.
,
Wilkinson
,
A. J.
, and
Jones
,
I. P.
,
2016
, “
A Study of Dislocation Transmission Through a Grain Boundary in HCP Ti–6Al Using Micro-Cantilevers
,”
Acta Mater.
,
103
, pp.
416
423
.
31.
Yang
,
Y.
,
Wang
,
L.
,
Bieler
,
T. R.
,
Eisenlohr
,
P.
, and
Crimp
,
M. A.
,
2011
, “
Quantitative Atomic Force Microscopy Characterization and Crystal Plasticity Finite Element Modeling of Heterogeneous Deformation in Commercial Purity Titanium
,”
Metall. Mater. Trans. A
,
42
(
3
), pp.
636
644
.
32.
Lim
,
H.
,
Carroll
,
J. D.
,
Battaile
,
C. C.
,
Buchheit
,
T. E.
,
Boyce
,
B. L.
, and
Weinberger
,
C. R.
,
2014
, “
Grain-Scale Experimental Validation of Crystal Plasticity Finite Element Simulations of Tantalum Oligocrystals
,”
Int. J. Plast.
,
60
, pp.
1
18
.
33.
Bieler
,
T. R.
,
Eisenlohr
,
P.
,
Roters
,
F.
,
Kumar
,
D.
,
Mason
,
D. E.
,
Crimp
,
M. A.
, and
Raabe
,
D.
,
2009
, “
The Role of Heterogeneous Deformation on Damage Nucleation at Grain Boundaries in Single Phase Metals
,”
Int. J. Plast.
,
25
(
9
), pp.
1655
1683
.
34.
Koning
,
M.
,
Kurtz
,
R. J.
,
Bulatov
,
V. V.
,
Henager
,
C. H.
,
Hoagland
,
R. G.
,
Cai
,
W.
, and
Nomura
,
M.
,
2003
, “
Modeling of Dislocation–Grain Boundary Interactions in FCC Metals
,”
J. Nucl. Mater.
,
323
(
2–3
), pp.
281
289
.
35.
Lee
,
T. C.
,
Robertson
,
I. M.
, and
Birnbaum
,
H. K.
,
1989
, “
Prediction of Slip Transfer Mechanisms Across Grain Boundaries
,”
Scr. Metall.
,
23
(
5
), pp.
799
803
.
36.
Liu
,
G. S.
,
House
,
S. D.
,
Kacher
,
J.
,
Tanaka
,
M.
,
Higashida
,
K.
, and
Robertson
,
I. M.
,
2014
, “
Electron Tomography of Dislocation Structures
,”
Mater. Charact.
,
87
, pp.
1
11
.
37.
Zikry
,
M. A.
,
1994
, “
An Accurate and Stable Algorithm for High Strain-Rate Finite Strain Plasticity
,”
Comput. Struct.
,
50
(
3
), pp.
337
350
.
38.
Ziaei
,
S.
, and
Zikry
,
M. A.
,
2015
, “
Modeling the Effects of Dislocation-Density Interaction, Generation, and Recovery on the Behavior of H.C.P. Materials
,”
Metall. Mater. Trans. A
,
46
(
10
), pp.
4478
4490
.
39.
Asaro
,
R. J.
, and
Rice
,
J. R.
,
1977
, “
Strain Localization in Ductile Single Crystals
,”
J. Mech. Phys. Solids
,
25
(
5
), pp.
309
338
.
40.
Franciosi
,
P.
,
Berveiller
,
M.
, and
Zaoui
,
A.
,
1980
, “
Latent Hardening in Copper and Aluminium Single Crystals
,”
Acta Metall.
,
28
(
3
), pp.
273
283
.
41.
Zikry
,
M. A.
, and
Kao
,
M.
,
1996
, “
Dislocation Based Multiple-Slip Crystalline Constitutive Formulation for Finite-Strain Plasticity
,”
Scr. Mater.
,
34
(
7
), pp.
1115
1121
.
42.
Shanthraj
,
P.
, and
Zikry
,
M. A.
,
2011
, “
Dislocation Density Evolution and Interactions in Crystalline Materials
,”
Acta Mater.
,
59
(
20
), pp.
7695
7702
.
43.
Ma
,
A.
,
Roters
,
F.
, and
Raabe
,
D.
,
2006
, “
Studying the Effect of Grain Boundaries in Dislocation Density Based Crystal-Plasticity Finite Element Simulations
,”
Int. J. Solids Struct.
,
43
(
24
), pp.
7287
7303
.
44.
Roters
,
F.
,
Eisenlohr
,
P.
,
Hantcherli
,
L.
,
Tjahjanto
,
D. D.
,
Bieler
,
T. R.
, and
Raabe
,
D.
,
2010
, “
Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications
,”
Acta Mater.
,
58
(
4
), pp.
1152
1211
.
45.
Rezvanian
,
O.
,
Zikry
,
M. A.
, and
Rajendran
,
A. M.
,
2008
, “
Microstructural Modeling in fcc Crystalline Materials in a Unified Dislocation-Density Framework
,”
Mater. Sci. Eng.: A
,
494
(
1–2
), pp.
80
85
.
46.
Brandon
,
D. G.
,
1966
, “
The Structure of High-Angle Grain Boundaries
,”
Acta Metall.
,
14
(
11
), pp.
1479
1484
.
47.
Abuzaid
,
W. Z.
,
Sangid
,
M. D.
,
Carroll
,
J. D.
,
Sehitoglu
,
H.
, and
Lambros
,
J.
,
2012
, “
Slip Transfer and Plastic Strain Accumulation Across Grain Boundaries in Hastelloy X
,”
J. Mech. Phys. Solids
,
60
(
6
), pp.
1201
1220
.
48.
Sangid
,
M. D.
,
Ezaz
,
T.
, and
Sehitoglu
,
H.
,
2012
, “
Energetics of Residual Dislocations Associated With Slip–Twin and Slip–GBs Interactions
,”
Mater. Sci. Eng.: A
,
542
, pp.
21
30
.
49.
Warrington
,
D. H.
, and
Bufalini
,
P.
,
1971
, “
The Coincidence Site Lattice and Grain Boundaries
,”
Scr. Metall.
,
5
(
9
), pp.
771
776
.
50.
Sutton
,
A. P.
, and
Balluffi
,
R. W.
,
1995
,
Interfaces in Crystalline Materials
,
Clarendon Press
,
Oxford, UK
.
51.
Britton
,
T. B.
,
Randman
,
D.
, and
Wilkinson
,
A. J.
,
2009
, “
Nanoindentation Study of Slip Transfer Phenomenon at Grain Boundaries
,”
J. Mater. Res.
,
24
(
03
), pp.
607
615
.
52.
Kumar
,
K. S.
,
Van Swygenhoven
,
H.
, and
Suresh
,
S.
,
2003
, “
Mechanical Behavior of Nanocrystalline Metals and Alloys
,”
Acta Mater.
,
51
(
19
), pp.
5743
5774
.
53.
Ovid'ko
,
I. A.
, and
Sheinerman
,
A. G.
,
2009
, “
Enhanced Ductility of Nanomaterials Through Optimization of Grain Boundary Sliding and Diffusion Processes
,”
Acta Mater.
,
57
(
7
), pp.
2217
2228
.
54.
Patriarca
,
L.
,
Abuzaid
,
W.
,
Sehitoglu
,
H.
, and
Maier
,
H. J.
,
2013
, “
Slip Transmission in bcc FeCr Polycrystal
,”
Mater. Sci. Eng.: A
,
588
, pp.
308
317
.
You do not currently have access to this content.