The creep behavior of a rotating disc made of isotropic composite containing varying amounts of silicon carbide in the radial direction has been investigated in the presence of a thermal gradient, also in the radial direction. The variation of silicon carbide content has been so tailored as to contain larger amounts of particles in a highly stressed region. This type of inhomogeneous material is known as Functionally Graded Material (FGM). The thermal gradient experienced by the disc is the result of braking action as estimated by FEM analysis. The creep behavior of the disc under stresses developing due to rotation has been determined following Sherby’s law and compared with that of a similar disc following Norton’s law. The difference in the distribution of stresses and strain rates in the discs does not follow any definite trend but the values are somewhat different. The presence of thermal gradient and a linear particle gradient separately or their simultaneous presence result in a significant decrease in steady state creep rates as compared to that in a composite disc with the same average particle content (20 vol %) distributed uniformly and operating under isothermal condition. Further, the study revealed that the creep behavior of a FGM disc could be significantly improved by increasing the gradient of particle distribution while keeping the same average particle content of 20 vol % silicon carbide in the disc.

1.
Hirai, T., 1996, “Functionally Gradient Materials,” Materials Science and Technology, R. W. Chan, P. Hassen, and E. J. Cramer, eds., VCH, Weinheim, Germany, 17B, pp. 293–341.
2.
Koizumi
,
M.
,
1997
, “
FGM Activities in Japan
,”
Composites, Part B
,
28
(
1
), pp.
1
4
.
3.
Zhu
,
J.
,
Lai
,
Z.
,
Yin
,
Z.
,
Jeon
,
J.
, and
Lee
,
S.
,
2001
, “
Fabrication of ZrO2–NiCr Functionally Graded Materials by Powder Metallurgy
,”
Mater. Chem. Phys.
,
68
(
1-3
), pp.
130
135
.
4.
Pattnayak, D. K., Bapat, V. P., and Rama Mohan, T. R., 2001, “Techniques for the Synthesis of Functionally Graded Materials,” Proc. National Seminar on Functionally Graded Materials FGM-2001, DRDO, Ambernath, India, pp. 86–93.
5.
Singh
,
S. B.
, and
Ray
,
S.
,
2001
, “
Steady State Creep Behavior in an Isotropic Functionally Graded Material Rotating Disc of Al-SiC Composite
,”
Metall. Trans. A
,
32
(
7
), pp.
1679
1685
.
6.
Nieh
,
T. G.
,
1984
, “
Creep Rupture of a Silicon Carbide Reinforced Aluminum Composite
,”
Metall. Trans. A
,
15
(
1
), pp.
139
145
.
7.
Tjong
,
S. C.
, and
Ma
,
Z. Y.
,
2000
, “
Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites
,”
Mater. Sci. Eng., A
,
29
, pp.
49
113
.
8.
Mishra
,
R. S.
, and
Pandey
,
A. B.
,
1990
, “
Some Observations on the High-Temperature Creep Behavior of 6061 Al-SiC Composites
,”
Metall. Trans. A
,
21
(
7
), pp.
2089
2090
.
9.
Park
,
K. T.
,
Lavernia
,
E. J.
, and
Mohamed
,
F. A.
,
1990
, “
High Temperature Creep of Silicon Carbide Particulate Reinforced Aluminum
,”
Acta Metall. Mater.
,
38
(
11
), pp.
2149
2159
.
10.
Pandey
,
A. B.
,
Mishra
,
R. S.
, and
Mahajan
,
Y. R.
,
1992
, “
Steady State Creep Behavior of Silicon Carbide Particulate Reinforced Aluminum Composites
,”
Acta Metall. Mater.
,
40
(
8
), pp.
2045
2052
.
11.
Mohamed
,
F. A.
,
Park
,
K. T.
, and
Lavernia
,
E. J.
,
1992
, “
Creep Behavior of Discontinuous SiC–Al Composites
,”
Mater. Sci. Eng., A
,
150
, pp.
21
35
.
12.
Ma
,
Z. Y.
, and
Tjong
,
S. C.
,
2001
, “
Creep Deformation Characteristics of Discontinuously Reinforced Aluminum-Matrix Composites
,”
Compos. Sci. Technol.
,
61
, pp.
771
786
.
13.
Pandey
,
A. B.
,
Mishra
,
R. S.
, and
Mahajan
,
Y. R.
,
1994
, “
High-Temperature Creep of Al-TiB2 Particulate Composites
,”
Mater. Sci. Eng., A
,
189
, pp.
95
104
.
14.
Gonzalez-Doncel
,
G.
, and
Sherby
,
O. D.
,
1993
, “
High Temperature Creep Behavior of Metal Matrix Aluminum-SiC Composites
,”
Acta Metall. Mater.
,
41
, pp.
2797
2805
.
15.
Park
,
K. T.
, and
Mohamed
,
F. A.
,
1995
, “
Creep Strengthening in a Discontinuous SiC–Al Composite
,”
Metall. Trans. A
,
26
, pp.
3119
3129
.
16.
Cadek
,
J.
,
Oikawa
,
H.
, and
Sustek
,
V.
,
1995
, “
Threshold Creep Behavior of Discontinuous Aluminum and Aluminum Alloy Matrix Composites: An Overview
,”
Mater. Sci. Eng., A
,
190
, pp.
9
23
.
17.
Li
,
Y.
, and
Mohamed
,
F. A.
,
1997
, “
An Investigation of Creep Behavior in an SiC-2124 Al Composite
,”
Acta Mater.
,
45
(
11
), pp.
4775
4785
.
18.
Li
,
Y.
, and
Langdon
,
T. G.
,
1997
, “
Creep Behavior of an Al-6061 Metal Matrix Composite Reinforced with Alumina Particulates
,”
Acta Mater.
,
45
(
11
), pp.
4797
4806
.
19.
Cadek
,
J.
,
Zhu
,
S. J.
, and
Milicka
,
K.
,
1998
, “
Creep Behavior of ODS Aluminum Reinforced by Silicon Carbide Particulates: ODS Al–30SiCp Composite
,”
Mater. Sci. Eng., A
,
248
, pp.
65
72
.
20.
Li
,
Y.
, and
Langdon
,
T. G.
,
1999
, “
An Examination of a Substructure-Invariant Model for the Creep of Metal Matrix Composites
,”
Mater. Sci. Eng., A
,
265
, pp.
276
284
.
21.
Ma
,
Z. Y.
, and
Tjong
,
S. C.
,
1999
, “
The High-Temperature Creep Behavior of 2124 Aluminum Alloys with and without Particulate and SiC Whisker Reinforcement
Compos. Sci. Technol.
,
59
, pp.
737
747
.
22.
Tjong
,
S. C.
, and
Ma
,
Z. Y.
,
1999
, “
High-Temperature Creep Behavior of Powder-Metallurgy Aluminum Composites Reinforced with SiC Particles of Various Sizes
,”
Compos. Sci. Technol.
,
59
, pp.
1117
1125
.
23.
Ma
,
Z. Y.
, and
Tjong
,
S. C.
,
2000
, “
High-Temperature Creep Behavior of SiC Particulate Reinforced Al–Fe–V–Si Alloy Composite
,”
Mater. Sci. Eng., A
,
278
, pp.
5
15
.
24.
Sherby
,
O. D.
,
Klundt
,
R. H.
, and
Miller
,
A. K.
,
1977
, “
Flow Stress, Subgrain Size, and Subgrain Stability at Elevated Temperature
,”
Metall. Trans. A
,
8
(
6
), pp.
843
850
.
25.
Metals Handbook (Vol. 2), 9th Ed., 1978, American Society for Metals, Metals Park, Ohio, USA, p. 714.
26.
Clyne, T. W., and Withers, P. J., 1993, An Introduction To Metal Matrix Composites, Cambridge Univ. Press, Cambridge, UK, p. 479.
27.
Holman, J. P., 1992, Heat Transfer, McGraw-Hill Book Company, London, p. 541, Chap. 10.
28.
Taya, M., and Arsenault, R. J., 1989, Metal Matrix Composites: Thermomechanical Behavior, Pergamon Press, Oxford, UK, p. 248.
29.
von Mises, R., 1986, Technical Memorandum 88488, NASA, Washington DC, translation of Mechanik der festen koerper im plastisch-deformablem Zustrand, Nachrichten von der Ko¨niglichen Gasellschaft der Wissenschaften, pp. 582–592.
30.
Singh
,
S. B.
, and
Ray
,
S.
,
2002
, “
Modeling the Anisotropy and Creep in Orthotropic Aluminum-Silicon Carbide Composite Rotating Disc
,”
Mech. Mater.
,
34
(
6
), pp.
363
372
.
31.
Wahl
,
A. M.
,
Sankey
,
G. O.
,
Manjoine
,
M. J.
, and
Shoemaker
,
E. J.
,
1954
, “
Creep Tests of Rotating Discs at Elevated Temperature and Comparison with Theory
,”
J. Appl. Mech.
,
21
(
3
), pp.
225
235
.
You do not currently have access to this content.