Primary rolling operations of twin-roll cast commercial aluminum alloys can be designed more efficiently on the basis of maintaining a constant rolling load throughout the rolling program. The computation of the final thickness of the strip for every pass can be conducted by means of the simplified theory of Bland and Ford, assuming a constant rolling load during the rolling schedule. Particularly, for twin-roll cast Al-1 percent Mn alloy (TRC 3003) it is possible to reduce one rolling pass if the rolling load is kept constant at about 800 ton. The implementation of this design procedure requires a knowledge of both the work-hardening characteristics of the material and the change in friction conditions throughout the operation. For this last purpose, von Ka´rma´n linear differential equation can be integrated following a more efficient computational procedure based on integrating factors and standard numerical integration methods. Also, the work-hardening characteristics of the material were determined from plane strain compression tests, on the basis of the evolution laws proposed by Sah et al. and Follansbee and Kocks. The rolling pass design that has been proposed could have clear advantages in terms of the productivity of the mill, quality of the rolled products and extension of the rolls life.

1.
Strid, J., 1992, Proc. 3rd Internat. Conf. on Aluminum Alloys, L. Arnberg, O. Lohne, E. Nes and N. Ryum, eds., Norwegian Institute of Technology, Trondheim, Norway, Vol. III, pp. 321–356.
2.
Strid, J., 1993, 2nd International School on Aluminum Alloy Technology, The Norwegian Institute of Technology, University of Trondheim, Norway.
3.
Lockyer
,
S. A.
,
Yun
,
M.
,
Hunt
,
J. D.
, and
Edmonds
,
D. V.
,
1996
,
Mater. Sci. Forum
,
217–222
, pp.
367
372
.
4.
Puchi, E. S., 1994, Numerical Predictions of Deformation Processes and the Behavior of Real Materials, S. I. Andersen et al., eds., Riso̸ National Laboratory, Roskilde, Denmark, pp. 463–468.
5.
Alexander
,
J. M.
,
1972
,
Proc. R. Soc. London, Ser. A
,
326
, pp.
535
563
.
6.
Venter
,
R.
, and
Abd-Rabbo
,
A.
,
1980
,
Int. J. Mech. Sci.
,
22
, pp.
83
92
.
7.
Pietrzyk, M., and Lenard J. G., 1991, Thermal-Mechanical Modelling of the Flat Rolling Process, Springer-Verlag, Berlin, p. 90.
8.
Pietrzyk
,
M.
, and
Lenard
,
J. G.
,
1991
,
ASME J. Eng. Mater. Technol.
,
113
, pp.
69
74
.
9.
Lim
,
L. S.
, and
Lenard
,
J. G.
,
1984
, “
Study of Friction in Cold Strip Rolling
,”
ASME J. Eng. Mater. Technol.
,
106
, pp.
139
146
.
10.
Hwu
,
Y. J.
, and
Lenard
,
J. G.
,
1988
,
ASME J. Eng. Mater. Technol.
,
110
, pp.
22
27
.
11.
Hockett
,
J. E.
,
1967
,
Trans. Metall. Soc. AIME
,
239
, pp.
969
976
.
12.
Sah
,
J. P.
,
Richardson
,
G. J.
, and
Sellars
,
C. M.
,
1969
,
J. Aust. Inst. Met.
,
14
, pp.
292
297
.
13.
Follansbee
,
P. S.
, and
Kocks
,
U. F.
,
1988
,
Acta Metall.
,
36
, No.
1
, pp.
81
93
.
14.
Bland
,
D. R.
, and
Ford
,
H.
,
1948
,
Proc. Inst. Mech. Eng.
,
159
, pp.
144
153
.
15.
Rowe, G. W., 1977, Principles of Industrial Metalworking Processes, Edward Arnold, London.
16.
Richardson, G. J., Hawkins, D. N., and Sellars, C. M., 1985, Worked Examples in Metalworking, The Institute of Metals, London.
You do not currently have access to this content.