
Salah U. Hamim
Advanced Development Engineering,

Fiat Chrysler Automobiles,

Auburn Hills, MI 48326

Raman P. Singh1

School of Mechanical and

Aerospace Engineering,

Oklahoma State University,

Stillwater, OK 74078

e-mail: raman.singh@okstate.edu

Proper Orthogonal
Decomposition–Radial Basis
Function Surrogate Model-Based
Inverse Analysis for Identifying
Nonlinear Burgers Model
Parameters From
Nanoindentation Data
This study explores the application of a proper orthogonal decomposition (POD) and
radial basis function (RBF)-based surrogate model to identify the parameters of a nonlin-
ear viscoelastic material model using nanoindentation data. The inverse problem is
solved by reducing the difference between finite element simulation-trained surrogate
model approximation and experimental data through genetic algorithm (GA)-based opti-
mization. The surrogate model, created using POD–RBF, is trained using finite element
(FE) data obtained by varying model parameters within a parametric space. Sensitivity
of the model parameters toward the load–displacement output is utilized to reduce the
number of training points required for surrogate model training. The effect of friction on
simulated load–displacement data is also analyzed. For the obtained model parameter
set, the simulated output matches well with experimental data for various experimental
conditions. [DOI: 10.1115/1.4037022]

1 Introduction

Conventional mechanical testing methods, such as uniaxial,
flexural, or bend tests, are widely used to characterize the mechan-
ical behavior of different materials [1–3]. However, these tests
require special specimen preparation due to extensive size or
shape restrictions, and are unable to characterize localized
changes in material behavior. Nanoindentation, which grew in
popularity after the initial work of Doerner and Nix and Oliver
and Pharr, can characterize the nanoscale mechanical behavior of
a material if a relatively flat test surface with small surface rough-
ness is provided [4,5].

Even though nanoindentation is a useful technique for materials
that are a challenge to characterize using conventional tests, the
highly nonlinear nature of nanoindentation load–displacement
data requires analytical or numerical analysis before the data can
be interpreted. For simpler material models, such as elastic or lin-
ear viscoelastic, analytical solutions can be used to identify the
model parameters [5–7]. However, for complex material behavior,
such as nonlinear viscoelasticity, analytical solutions are not
available [8]. In these cases, inverse analysis coupled with finite
element (FE) analysis can be adopted to calibrate the constitutive
relationship for observed mechanical behavior [9–15]. Inverse
analysis finds the set of model parameters through optimization
for which the value of the objective function (difference between
simulated and experimental data) is the minimum.

For material models for which no a priori information is avail-
able, a global optimization technique such as the genetic algorithm
(GA) or particle swarm optimization is usually recommended.
These techniques are very useful at finding the global minima in a
parametric space, albeit the computational expense associated
with the process is rather high. This is a challenge in FE-based
inverse analysis since computationally expensive FE simulations
are required at every iteration. Moreover, the computation expense
of the process increases tremendously if the number of model
parameters required to capture material behavior is high, which is
often the case for complex material behavior such as nonlinear
viscoelasticity.

One way to minimize the computational expense is to use a
numerical model that approximates the input–output relationship
of the FE simulation. In this process, called surrogate modeling or
meta-modeling, the numerical model is trained with FE data and
used inside an optimization routine instead of the actual FE
simulation. A wide range of mathematical tools, such as artificial
neural network [16], support vector regression [17,18], surrogate
model accelerated random search [19], Kringing [20], radial basis
function’s (RBFs) [21], and nonuniform rational B-spline [22],
have been used in the past to create surrogate models. Studies con-
cerning the overall performance of interpolative surrogate models
show that RBF is highly capable as compared with other meta-
modeling techniques [23–25]. RBF-based surrogate models are
capable of providing good approximations for a wide variety of
functions, making them ideal for problems where definitive
knowledge about the system function is absent.

Proper orthogonal decomposition’s (POD) ability to reduce
model size combined with RBF interpolative power has been pre-
viously used to identify material model parameters using
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nanoindentation data [26–28]. Although these studies have dem-
onstrated the usefulness of the POD–RBF surrogate modeling
approach in solving nanoindentation inverse problem, its
applicability has been limited to simple time-independent material
models. Time-dependent complex material behaviors, such as
nonlinear viscoelasticity, require higher number of model parame-
ters to describe the material response. In addition, in the case of
time dependence, a mixed-mode interpolation problem arises due
to the involvement of both spatial and temporal variables. This is
especially challenging for RBF-based surrogate models due to the
scaling difference between spatial and temporal variables.

In published literature, a lack of systematic approach to
nanoindentation-based identification of nonlinear viscoelastic
model parameters can be observed. The few studies that have
tackled the problem considering a large number of model parame-
ters have not reported or emphasized the parameter identification
procedure [29,30]. Since the nanoindentation-related inverse prob-
lem is ill-posed in nature, using unnecessarily high number of
model parameters can often lead to a local minima. Furthermore,
to the best of our knowledge, none of the previous studies
have demonstrated the applicability of surrogate model-based
parameter calibration for a nonlinear viscoelastic constitutive rela-
tionship. Therefore, this study is designed to identify nonlinear
viscoelastic model parameters using nanoindentation data through
a systematic POD–RBF surrogate modeling approach, and to
overcome the limitation of the RBF-based surrogate model for
spatial–temporal mixed-mode interpolation problem.

2 Study Details

To demonstrate the applicability of the POD–RBF technique
for determining nonlinear viscoelastic model parameters, nanoin-
dentation was carried out on a candidate material. The FE model
was constructed using a commercial finite element package
ABAQUS (Dassault Syst�emes, Providence, RI). The constitutive
model was implemented in a user-defined subroutine (UMAT) via
a FORTRAN script.

Using a combination of Taguchi and analysis of variance
(ANOVA) methods, the sensitivity of FE simulation output to the
material model parameters was identified. This information was
utilized to reduce the number of levels in which individual model
parameters were varied. FE simulations were carried out for a
finite number of model parameter sets where at least one parame-
ter was varied within the parametric space. The simulation data
were utilized to create the POD–RBF surrogate model. The model
parameters were then identified through a GA-based optimization
algorithm that minimized the difference between the experimental
data and the surrogate model’s prediction.

2.1 Nanoindentation Experiments. Nanoindentation experi-
ments were conducted on an MTS Nanoindenter XP (Agilent
Technologies, Santa Clara, CA) using a load-controlled scheme
with a Berkovich tip. The maximum load was set to 0.5, 0.75, and
1.0 mN for the experiments. A triangular loading profile was cho-
sen with 30, 45, 60, or 240 s total duration. The duration was kept
constant for the loading and unloading segments. The acceptable
thermal drift rate was chosen to be 0.15 nm/s and the experiment
was started only after the system was stable and within the
acceptable thermal drift rate. The raw load–displacement data
were corrected for thermal drift before being used in the optimiza-
tion algorithm.

An epoxy polymer, fabricated using EPON 862 and Epikure
3274 (Miller-Stephenson Chemical Company, Inc., Danbury, CT)
mixed at 100:40 weight ratio, was selected for the nanoindentation
experiments. Surface preparation of the samples was following
standard metallographic techniques.

2.2 Finite Element Simulations. The commercial finite element
software, ABAQUS, was used for modeling the nanoindentation

experiment and for solving the FE problem. The Berkovich tip was
modeled as a 3D discrete rigid body while the sample was modeled
as a 3D deformable body. A finer mesh was provided to the sample
near the contact region to ensure good convergence and also to
improve the quality of the finite element solution.

Contact between the indenter and the sample was defined as
surface-to-surface contact. The indenter and the sample were
assigned as the master and the slave surfaces, respectively. The
element type was chosen from the eight-node brick element fam-
ily (C3D8). The FE problem consisted a total of 1323 elements
and 1817 nodes. Figure 1 shows a schematic of the ABAQUS finite
element model in this investigation.

2.3 Constitutive Material Model. A spring–dashpot model
developed by Marin and Pao was used as the constitutive material
model [31]. For the linear case, this model is generally called the
four-parameter Burgers model and it is formed by a serial connec-
tion of a Maxwell element to a Voigt element [32]. Figure 2
shows the schematic of the nonlinear Burgers model.

The nonlinear characteristic is introduced when the dashpot
constants (ms and mt) take values other than unity. The total
strains are calculated as the summation of the elastic (ee), transient
creep (et), and steady creep (es) strains [33]. If nonlinear creep
deformation is assumed to be incompressible, then the three-
dimensional nonlinearly viscoelastic law can be expressed as

ee
ij ¼

1þ �
E

rij �
�

E
rkkdij

_es
ij ¼ CsJ

ms

2 tð Þsij tð Þ

_et
ij þ

et
ij

te
¼ Ct

te
Jmt

2 tð Þsij tð Þ

(1)

where E and � are the Young’s modulus and Poisson ratio, respec-
tively; J2 is the second invariant of the deviatoric stress tensor s;
Cs, Ct, ms, mt, and te are the nonlinear material parameters; r is
the Cauchy stress tensor; i and j are the indices ranging across 1,
2, and 3; and dij is the Kronecker delta.

Fig. 1 ABAQUS finite element model

Fig. 2 Nonlinear Burgers model
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A user-defined material (UMAT) was developed in order to
implement the nonlinear Burgers model in ABAQUS. UMAT
requires the tangent stiffness matrix, dDr/dDe of the material
model for calculations. This can be achieved by temporal discreti-
zation of Eq. (1) using a stable integration operator [29,30]. The
compliance matrices obtained for equations in Eq. (1) are given
below

1=E ��=E ��=E 0 0 0

1=E ��=E 0 0 0

1=E 0 0 0

1þ �
E

0 0

1þ �
E

0

1þ �
E

2
66666666666666664

3
77777777777777775

symmetric

DtCsJ
ms

2 tð Þ

1=3 0 0 0 0 0

1=3 0 0 0 0

1=3 0 0 0

1=2 0 0

1=2 0

1=2

2
666666666664

3
777777777775

symmetric

Dt

2te þ Dt
CtJ

mt

2 tð Þ

2=3 0 0 0 0 0

2=3 0 0 0 0

2=3 0 0 0

1 0 0

1 0

1

2
666666666664

3
777777777775

symmetric

(2)

The total compliance is obtained as

dDeij

dDrkl
¼

dDee
ij

dDrkl
þ

dDes
ij

dDrkl
þ

dDet
ij

dDrkl
(3)

By investigating the total compliance matrix, the system tan-
gent stiffness matrix (Jacobian matrix), dDrij/dDekl, can be
obtained from Eq. (3). The Jacobian matrix in Eq. (3) accounts
only for the elastic deformation and creep deformation caused by
load or stress increment. The rest of the creep strain is developed
during the time increment, which is controlled by the applied
stress [29,30]. An artificial stress increment is introduced to
include this creep strain in the system equation. This part of creep
strain can be extracted as

De0 ¼ DtCtJ
mt

2 tð Þsij tð Þ þ 1

2te þ Dt
2DtCtJ

mt

2 tð Þsij tð Þ � 2Dtet
� �

(4)

A stress increment Dr0 ¼ CDe0 is then added into the system
equation to account for the creep strain in Eq. (4), with C being
the Jacobian stiffness matrix calculated from Eq. (3).

2.4 Friction Coefficient Parametric Study. An important
factor to consider in nanoindentation experiments is the friction
generated between the indenter tip and the sample surface.
This can be taken into consideration in the analysis by defining a
sliding contact with a finite friction coefficient between the
surfaces.

To simplify the FE model, many researchers have opted to
assume frictionless contact between the tip and the sample surface
[34,35]. This assumption was based on the fact that the nanoin-
dentation response was insensitive to friction. However, a few
researchers using FE simulation have shown that the influence of
friction depends on other factors, such as the material model used
and the geometry of the tip [36,37]. If these factors change from
one study to another, studying the effect of friction becomes a
necessity.

Previous studies that used the nonlinear Burgers model in a
nanoindentation-based FE study did not investigate the effect of
friction on the load–displacement data [29,30]. Hence, in order to
improve the understanding, this study performed a parametric
study, where the value of the coefficient of friction was varied in
four steps ranging from 0 to 0.5.

2.5 Sensitivity Analysis. A sensitivity study of the parame-
ters was conducted, before generating FE simulation data, by
varying the model parameters. This information helps to reduce
the number of FE simulations used for training [38].

The nonlinear Burgers model has seven independent parame-
ters, i.e., E, �, Cs, ms, Ct, mt, and te. In general, the nanoindenta-
tion load–displacement output is not influenced by the Poisson’s
ratio, � [39–41]. Therefore, in order to keep the number of inde-
pendent parameters to a minimum, � was given a constant value
of 0.34 and was not included in the sensitivity analysis scheme.

Sensitivity analysis was carried out using the ANOVA tech-
nique. The data required for ANOVA were generated using the
Taguchi design of experiments method. In this study, the six non-
linear model parameters were varied in three equidistant levels. A
statistical software, MINITAB (Minitab Inc., State College, PA), was
used to design the experiments. For six parameters, where each
parameter was varied in three levels, Taguchi L27 orthogonal
array design is appropriate. Table 1 shows the levels of the six
individual parameters of the nonlinear Burgers model.

Taguchi L27 experimental design mandates 27 different com-
puter experiments. Each of these 27 simulations resulted in data in
terms of indenter displacement. The resulting value of error func-
tion, d, was calculated using Eq. (5). This value was utilized in
ANOVA to determine the effect of each parameter on the error
function

d ¼ 1

n

X
hi

exp � hi
sim

� �2
� �

(5)

In Eq. (5), i¼ 1, 2, 3, …, n, and n is the number of data points
in a single nanoindentation simulation or experiment.

Sensitivity of the nanoindentation output was also determined
in a different way, where the difference in output between lowest
and highest limit of the individual parameter levels was deter-
mined. Unlike the Taguchi–ANOVA procedure, here only the
indenter depth at maximum load and the depth after unloading
were studied.

This type of parametric sensitivity analysis has been used previ-
ously in understanding nanoindentation experiments. In this study,
this sensitivity analysis was performed in order to complement the
Taguchi–ANOVA procedure, and to get an understanding of how

Table 1 Levels of nonlinear Burgers model parameters

Parameters Level 1 Level 2 Level 3

E 3 3.25 3.5
Cs 0.02 0.06 0.1
ms 0.15 0.25 0.35
Ct 0.15 0.25 0.35
mt 0.2 0.5 0.8
t� 0.1 0.25 0.4
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individual parameters contributed to the variance of an indenta-
tion load–displacement plot’s two key features.

2.6 Proper Orthogonal Decomposition–Radial Basis Function
Surrogate Model. The POD theory was developed to approxi-
mate a function over some domain of interest based on the known
input–output relationships [42–44]. This study followed the
POD–RBF surrogate training procedure outlined by Buljak [45]
and Rogers et al. [46]. The POD–RBF method requires creating
snapshots (input–output relationships of the system) from which
the surrogate model can be established. The more snapshots or
training data points that can be utilized to generate the surrogate
model the better the approximation.

Nonetheless, the computational burden associated with generat-
ing a large number of snapshots becomes the limiting factor in
obtaining very high-fidelity predictions from the surrogate model.
Sensitivity analysis could be utilized to reduce the number of
snapshots without the loss of approximation error [38]. Hence, in
this study, a similar approach was adopted to reduce the computa-
tion burden of training the surrogate model for the nonlinear
Burgers model.

Once the number of levels for different parameters was selected
using information from sensitivity analysis, a full factorial
approach was taken to generate the input parameter sets. These
parameter sets were combined to produce the input matrix, P.
Finite element simulation experiments were carried out for every
individual parameter sets and their corresponding indenter dis-
placement data were assimilated in the snapshot matrix, U, which
can be defined as

U ¼

u1
1 u2

1 � � � uM
1

u1
2 u2

2 � � � uM
2

..

. ..
. . .

. ..
.

u1
N u2

N � � � uM
N

2
666664

3
777775

(6)

In this study, FE training data were generated by simulating
four different experimental conditions. In these experimental con-
ditions, the maximum load was kept constant at 1.0 mN, while the
strain rate was varied from 1/30 s�1 to 1/240 s�1. Separate surro-
gate models were trained using FE data to represent each of these
experimental conditions. Creating separate surrogate models
ensured that each of these numerical models contained only spa-
tial variables. This was done to overcome RBF’s limitation in
dealing with mixed-mode scaling differences. The approximations
from each surrogate model were compared against their own
experimental indenter displacement data to form the objective or
error function. Based on a recent investigation by Hamim and
Singh, a multiquadratic RBF with the shape parameter value of
cj¼ 0.5 was chosen for this study [38].

2.7 Genetic Algorithm-Based Optimization. A multi-objective
GA-based optimization procedure was used to identify the param-
eters of the nonlinear Burgers model. The procedure was imple-
mented using MATLAB’s (Mathworks Inc., Natick, MA) global
optimization toolbox. Scores of the first and all subsequent gener-
ations were determined by evaluating the fitness function that was
submitted to the program via a MATLAB script.

A double vector initial population of 200 was randomly created
with a uniform distribution. Selection of the next generation
parents was carried out via a tournament of size 2. Eighty percent-
age of the next generation population was produced via intermedi-
ate crossover, while the remainder was created through Gaussian
mutation. The values of scale and shrink parameters were set to 1.

In case of intermediate crossover, the creation of children from
two parents is controlled by a single parameter ratio. The value of
this parameter was selected to be 1 for this study. Next generation

children were created through a random weighted average of the
parents.

The forward migration parameters, fraction and interval, were
selected to be 0.2 and 20, respectively. A total number of genera-
tions for the optimization algorithm were chosen to 100� number
of parameters, i.e., 100� 6¼ 600 for this study. The fitness (error)
function tolerance was chosen to be 10�4.

3 Results and Discussion

3.1 Effect of the Friction Coefficient. The effect of the
friction coefficient on maximum and residual depths attained
during nanoindentation was analyzed. Figure 3 shows the effect
for conditions represented by a fixed maximum load of 1.0 mN
with different loading–unloading times. For any given value of
the friction coefficient, the values of both maximum and residual
depths decreased as compared to the corresponding frictionless
case of indentation. The plots represent the reduction of depths

Fig. 3 Effect of the friction coefficient f on nanoindentation
data for different loading–unloading times and constant
maximum loads (difference 5 depth for frictionless—depth for
f 5 0.125/0.25/0.5)
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between the simulations of a frictionless condition and a
particular friction coefficient (e.g., f¼ 0.125, 0.25, or 0.5). All
other conditions, e.g., boundary conditions, maximum load,
loading–unloading time, and material model parameters, were
kept constant. Both Figs. 3(a) and 3(b) are plotted at the same ver-
tical scale for ease of comparison.

Figure 3 shows that, for any value of the friction coefficient
within the studied range, the value of maximum and residual
depths was reduced in comparison to the frictionless condition.
This behavior was found to be true for all studied conditions with
varying loading–unloading times. When friction is considered in a
nanoindentation study, part of the energy that could be utilized to
displace the material is dissipated as frictional energy. This loss of
energy leads to a reduced displacement of the indenter. Similar
behavior has been observed for the simulation of elastic–plastic
indentation. DiCarlo et al. observed that the introduction of fric-
tion in the model increased the calculated hardness by lowering
the indenter displacement at maximum load [47].

Figure 3(a) also illustrates that for a given friction coefficient,
the reduction in maximum depth varied as a function of
loading–unloading time. The greater the loading–unloading time,
the lower the maximum depth observed in comparison to the
frictionless condition.

Figure 3(b) shows the reduction in residual depth values
between a frictionless simulation and a finite friction coefficient
simulation. Here, for any given value of the friction coefficient,
the difference diminished with increasing loading–unloading
time. When lower loading–unloading time is used in an indenta-
tion experiment, the viscoelastic creep response is subdued.
Hence, the elastic response has relatively higher dominance on
the overall deformation behavior. The observed behavior may
mean that friction has more effect on the residual depth when
viscoelastic behavior has lower dominance over the nanoindenta-
tion data.

For both maximum and residual depths, the reduction in
indentation depths was observed to be very small for all loading–
unloading times. For instance, in the case of t¼ 240 s, the condi-
tion which showed the highest deviation for maximum depth, the
reduction was found to be� 0.5%. On the other hand, the highest
reduction in residual depth was found to be �1.8%.

Figure 4 shows the effect of the friction coefficient on maxi-
mum and residual depths when the loading–unloading time was
kept constant and the maximum load was varied from 0.5 to
1.0 mN. Similar to the results discussed earlier, where loading–
unloading time was varied, the values of maximum and residual
depths were found to have decreased from the values obtained for
the frictionless condition.

Figure 4(a) shows that increase in the friction coefficient
resulted in a higher reduction in maximum depth in comparison to
the frictionless counterpart. This observation was common for all
three maximum load conditions. Similar behavior was observed
for residual depth reductions, as illustrated in Fig. 4(b). Since a
higher friction coefficient would lead to greater frictionally dissi-
pated energy, greater reductions in maximum depth, as compared
to the frictionless conditions, would be expected. Nevertheless,
the overall differences were very small. For f¼ 0.5, which pro-
vided the maximum differences, reductions in maximum and
residual depths were found to be �0.5% and 1%, respectively.

Another observation common for both Figs. 4(a) and 4(b) was
that between different maximum load conditions, there were little
differences for a given coefficient of friction. This could mean
that within the given range of loads (0.5–1.0 mN), the maximum
load has no effect over the friction behavior. However, determin-
ing whether the maximum load insensitivity is a universal fact
requires further investigation.

This parametric study shows that the inclusion of friction in the
finite element model leads to changes in the indentation
load–displacement response. Nonetheless, the variations are small
for the conditions of interest. An actual nanoindentation experi-
ment can never be entirely frictionless. Therefore, this study

included the effect of friction in the model by using a coefficient
f¼ 0.25 for all sensitivity analysis and surrogate model develop-
ment purposes.

3.2 Sensitivity Analysis. Table 2 shows the result of
sensitivity analysis carried out using Taguchi-based design of
experiments and ANOVA.

The “% Contribution” data, a measure of variation contributed
by individual parameters, show that, except for te, all other param-
eters contributed toward the overall variation, although majority
of the contribution was originating from only two parameters, Cs

and ms.
Figure 5 shows the sensitivity to the model parameters for

the indentation depths at maximum load and at the end of
unloading, i.e., maximum and residual depths. Similar to the
Taguchi–ANOVA-based sensitivity results, it is seen that te had
little to no impact on maximum or residual depths. Meanwhile, Cs

and ms had the most significant impact for both. Furthermore, the

Fig. 4 Effect of the friction coefficient f on nanoindentation
data for different maximum loads and constant loading–
unloading times (difference 5 depth for frictionless—depth for
f 5 0.125/0.25/0.5)
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level of significance was much more pronounced for residual
depth as compared to maximum depth.

Another observation that could be drawn from these results was
that the elastic modulus has a positive correlation with the strain
rate. In other words, when the strain rate was higher, both the
maximum and residual depths were comparatively more strongly
influenced by variations in the elastic modulus. One explanation

of this observation is that when the strain rate is higher, visco-
elastic response gets subdued due to the inherent time lag between
the elastic and viscoelastic responses. As the strain rate becomes
smaller and smaller, the viscoelastic (or creep) response catches
up with the elastic response. Hence, the elastic part of the dis-
placement becomes less dominant in the overall displacement pat-
tern of the material.

Figure 5 shows another important observation, which is con-
trary to ANOVA results. The two parameters, Ct and mt, show
opposite trends in these two sensitivity tests. In the case of
ANOVA, Ct showed substantial influence toward the output,
while it was fairly insignificant in Fig. 5. Contrary to the effect of
Ct, the mt parameter exhibited a high level of sensitivity in Fig. 5
but insignificant influence in the ANOVA results. This is because
Fig. 5 represents the sensitivity of individual parameters toward
two points in the nanoindentation load–displacement plot, namely
the maximum and residual depths. Although these two points are
very important in understanding a material’s response, they do not
represent the entire load–displacement plot during indentation. It
is possible that two plots, distinct in every other way, can have the
same maximum and residual depths. That is why having multiple
complementary means of determining sensitivity can provide a
broader view of the problem.

3.3 Surrogate Model Training and Inverse Analysis. The
findings from the sensitivity analysis were taken into account to
revise the number of levels for each nonlinear Burgers model
parameter. As discussed, te showed no influence over the output of
the nanoindentation simulations. This implies that either te cannot
be accurately determined from a Berkovich nanoindentation
experiment or that it is a redundant parameter in describing the
material response. Hence, te was given a constant value to reduce
computational expense.

The two parameters that were the most influential, Cs and ms,
were varied at four levels. Meanwhile, moderately influential
parameters, E and Ct, were varied at three levels. According to
ANOVA, mt did not significantly influence the output. However,
the parametric study showed that mt had some influence over the
maximum and residual depths. For this reason, instead of assign-
ing a constant value to mt, it was varied at two levels.

Table 3 shows the corresponding levels for each parameter that
was selected based on the sensitivity analysis. In a full factorial
basis, a total of 3� 4� 4� 3� 2� 1¼ 288 finite element simula-
tions were carried out in order to generate the surrogate model for
every single experimental condition. For each of these simula-
tions, 100 load–displacement data points were obtained. Since
there were four individual experimental conditions to represent, a
total of four surrogate models were developed. The snapshot
matrix used to generate each of these surrogate model had
dimensions of 100� 288.

After the POD model reduction process was carried out and the
RBF coefficients were calculated, the POD–RBF surrogate
models were used to approximate FE outputs within the specified
parametric space. The objective functions were written in MATLAB

where each surrogate model’s output was compared against the
corresponding experimental data. These objective functions were
the used within the MATLAB GLOBAL OPTIMIZATION TOOLBOX to run

Fig. 5 Output sensitivity toward different nonlinear Burgers
model parameters

Table 3 Parametric space of nonlinear Burgers parameters for
surrogate training

Parameters No. of points in space Parametric value space

E 3 3, 3.25, 3.5
Cs 4 0.02, 0.045, 0.07, 0.1
ms 4 0.35
Ct 3 0.15, 0.25, 0.35
mt 2 0.2, 0.8
t� 1 0.25

Table 2 Analysis of variance for different parameters

Source DF Adj SS Adj MS F-value % Contribution

E 2 5.6� 109 2.8� 109 3630.33 11.20
Cs 2 1.6� 1010 8.0� 109 10,379.48 32.01
ms 2 2.2� 1010 1.1� 1010 14,375.63 44.34
Ct 2 6.2� 109 3.1� 109 4025.69 12.42
mt 2 1.5� 107 7.5� 106 9.70 0.03
t� 2 9.3� 104 4.6� 104 0.06 0.00
Error 14 1.1� 107 7.7� 105

Total 26 5.0� 1010
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multi-objective GA-based global optimization. Table 4 shows the
result from the global optimization algorithm.

The optimized set of parameters found using the optimization
algorithm is listed in Table 4. In addition, Fig. 6 shows the
comparison of predicted and experimental data for all four experi-
mental cases. These were the experimental conditions that were
closely followed in creating finite element models and were used
to train the predictive or surrogate model. From Fig. 6, it can be
seen that all four surrogate model outputs were very close to the
corresponding experimental data. This demonstrated that the
multi-objective genetic algorithm-based optimization procedure
was successful in finding a common minima taking the constraints
into consideration.

Although, surrogate model predictions mostly agreed with
the experimental data, a few inconsistencies were observed. For
example, the final unloading portion data for the loading–
unloading time t¼ 30 s did not match very well with the experi-
mental data. Similar behavior was observed for t¼ 45 s, even
though qualitatively the difference between prediction and experi-
ment had diminished. For higher loading–unloading times, i.e.,
t¼ 60 s and 240 s, the differences were noticeably much smaller.

Figure 7 compares the finite element model outputs for the
identified Burgers model parameters with the corresponding nano-
indentation experimental data. The surrogate model developed
with finite element simulation data was not trained for these
experimental conditions. Therefore, these conditions were used to
validate the optimized set of Burgers model parameters.

In training the surrogate model for approximating nonlinear
Burgers model output, experimental conditions with varying
loading–unloading times were used. On the other hand, these
validation experiments used maximum loads for which the model

was not trained. This decision was deliberately made in considera-
tion of the fact that nonlinear viscoelastic behavior depends not
only on the strain rate but also on the strain levels associated with
the experiment. It was assumed that changing the load levels
would result in a change of strain levels.

From the validation plots for untrained experimental conditions,
it could be observed that the finite element simulation output
closely matched with the experimental data. In two of the cases
(Figs. 7(b) and 7(d)), however, a portion of the unloading curve
showed some discrepancies in a qualitative sense.

The variation between different plots for the optimized set of
model parameters could stem from different factors. One such fac-
tor could be the friction coefficient used in the finite element
model. As it can be seen, the effect of the friction coefficient var-
ied depending on the experimental conditions that were being
replicated. Therefore, the error associated with using a particular
friction coefficient also varied from one experimental condition to
another. Since the whole process of inverse analysis depended on
numerical manipulations, different errors in the finite element
simulation data could have skewed the parameter optimization in
one way or the other.

4 Conclusions

The inverse problem of identifying nonlinear viscoelastic
model parameters was solved using an FE simulation trained
POD–RBF surrogate model and a multi-objective GA optimiza-
tion algorithm. A constitutive material model, known as the non-
linear Burgers model, was used to represent the nonlinear
viscoelastic behavior of a material under indentation loading.
RBF’s limitation of properly scaling temporal and spatial varia-
bles was circumvented by using multiple surrogate models repre-
senting experimental conditions with different loading–unloading
times. The effect of the friction coefficient between the sample
and the tip surface was investigated for the particular constitutive
model. The individual model parameter’s impact toward simula-
tion output was identified using Taguchi and ANOVA method,
and this information was used to reduce the number of training
points.

Table 4 Optimized nonlinear Burgers model parameters

Parameters E � Cs ms Ct mt te

Optimized 3.28 0.34 0.09 0.20 0.24 0.47 0.25

Fig. 6 Experiment versus surrogate model for calibrated non-
linear Burgers model parameters: load time, t 5 30 s (a), 45 s (b),
60 s (c), and 240 s (d)

Fig. 7 Experiment versus finite element simulation for cali-
brated nonlinear Burgers model parameters: load time, t 5 30 s
(a), 45 s (b), 30 s (c), and 45 s (d)
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From the sensitivity analysis, it was observed that various
parameters had different impact on the load–displacement output.
The nanoindentation response was most sensitive to the change in
parameters, Cs and ms, and least sensitive to te. The effect of the
friction coefficient on the simulation study was found to be small;
the maximum difference for the studied conditions was approxi-
mately 2.0%. It was also found that multi-objective GA coupled
with separate surrogate models representing different experimen-
tal conditions was capable of determining the material model
parameters within the parametric space. The identified parameter
set provided good agreement between numerical or simulation
and experimental data.
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