Abstract

The objective of this review is twofold: to show materials scientists, mechanical engineers, and reliability physicists not involved in electronics, photonics, microelectronic-mechanical-systems (MEMS), or MOEMS (optical MEMS) engineering what kind of value they could bring to this important “high-tech” area, as well as to demonstrate to “high-tech” engineers how they could benefit from the application of what has been developed, for many years, in the general field of physical design for reliability of materials and structures employed in various fields of engineering and applied science and what could be effectively applied to their body of knowledge. Accordingly, in the perspective part of the review, some critical and even paradoxical, i.e., a priori nonobvious, problems encountered in microelectronics and photonics materials science, reliability physics, and structural analysis are addressed using what could be called analytical (“mathematical”) modeling. The extension part has to do with some specific, mostly aerospace, recent applications of the probabilistic design for reliability concept and analytical modeling effort.

References

1.
Shilliday
,
T. S.
, and
Vaccaro
,
J.
,
1966
,
Physics of Failure in Electronics
, Vol.
5
,
Spartan Books
,
Baltimore
.
2.
Kececioglu
,
D.
, and
Jack
,
J.
,
1984
, “
The Arrhenius-Eyring Inverse Power Law and Combination Models in Accelerated Life Testing
,”
Reliab. Eng.
,
8
(
1
), pp.
1
9
.
3.
Johnson
,
W. S.
,
1985
, “
Delamination and Debonding of Materials
,” ASTM STP 876, Symposium Sponsored by ASTM Committees D-30 on High Modulus Fibers and Their Composites and E-24 on Fracture Testing, Pittsburgh, PA, Nov. 8–10, 1983.
4.
Peck
,
D. C.
, and
Trapp
,
O. D.
,
1987
,
Accelerated Testing Handbook
,
Technology Associates
,
Portola Valley, CA
.
5.
Pagano
,
N. J.
,
1989
,
Interlaminar Response of Composite Materials
,
Elsevier
,
North Holland
.
6.
Nelson
,
W.
,
1990
,
Accelerated Testing
,
Wiley
,
New York
.
7.
Fukuda
,
M.
,
1991
,
Reliability and Degradation of Semiconductor Lasers and LEDs
,
Artech House
,
Washington, DC
.
8.
Engelmaier
,
W.
,
1991
,
Solder Attachment Reliability, Accelerated Testing, and Result Evaluation in Solder Joint Reliability
,
Van Nostrand Reinhold
,
New York
.
9.
Klinger
,
D. J.
,
1991
, “
On the Notion of Activation Energy in Reliability: Arrhenius, Eyring and Thermodynamics
,”
Reliability and Maintainability Symposium
,
Orlando, FL
,
Jan. 29–31
, pp.
295
300
.
10.
Yin
,
W. L.
,
1995
, “
Interfacial Thermal Stresses in Layered Structures: The Stepped Edge Problem
,”
ASME J. Electron. Packag.
,
117
(
2
), pp.
153
158
.
11.
Di Giacomo
,
G.
,
1997
,
Reliability of Electronic Packages and Semiconductor Devices
,
McGraw-Hill
,
New York
.
12.
Bellcore
,
1998
, “
Generic Requirements GR-468-CORE, “Generic Reliability Assurance Requirements for Optoelectronic Devices Used in Telecommunications Equipment
,” A Module of RQGR, FR-796, Issue 1, Telcordia Technologies.
13.
Suhir
,
E.
,
Fukuda
,
M.
, and
Kurkjian
,
C. R.
,
1998
, “
Reliability of Photonic Materials and Structures
,”
MRS Symposia Proceedings
,
San Francisco, CA
,
Apr. 13–15
, Vol.
531
.
14.
Meeker
,
W. Q.
, and
Escobar
,
L. A.
,
1998
, “
Pitfalls of Accelerated Testing
,”
IEEE Trans. Reliab.
,
47
(
2
), pp.
114
118
.
15.
Dowling
,
N. E.
,
1999
,
Mechanical Behavior of Materials
,
Prentice-Hall
,
NJ
.
16.
Condra
,
L. W.
,
2001
,
Reliability Improvement with Design for Experiments
,
Marcel Dekker, Inc
,
New York
.
17.
Tummala
,
R. R.
,
2001
,
Fundamentals of Microelectronics Packaging
,
McGraw-Hill
,
New York
.
18.
Suhir
,
E.
,
Wong
,
C.-P.
, and
Lee
,
Y.-C.
,
2008
,
Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Packaging, Reliability
, Vol.
2
,
Springer
,
New York
.
19.
Fan
,
X.
, and
Suhir
,
E.
,
2010
,
Moisture Sensitive Plastic Packages of IC Devices
,
Springer
,
New York
.
20.
JEDEC Solid State Technology Association
,
2002
, “
Terms, Definitions, and Letter Symbols for Microcomputers, Microprocessors, and Memory Integrated Circuits
,” (PDF). JESD100B.01. p.
8
, Release No. 19. Committee (s): JC-45, JC-45.1. JESD21-C Solid State Memory Documents Main Page. Annex Y, R/C Y, in 240-Pin PC3-6400/PC3-8500/PC3-10600/PC3-12800 DDR3 SDRAM Registered DIMM Design Specification, MODULE4.20.20.Y, Accessed Apr. 5, 2009.
21.
Suhir
,
E.
,
Bechou
,
L.
, and
Bensoussan
,
A.
,
2012
, “
Technical Diagnostics in Electronics: Application of Bayes Formula and Boltzmann–Arrhenius–Zhurkov (BAZ) Model
,”
Printed Circuit Design & Fab/Circuits Assembly
,
29
(
12
), pp.
25
28
.
22.
Suhir
,
E.
, and
Bechou
,
L.
,
2013
, “
Availability Index and Minimized Reliability Cost
,” Circuit Assemblies.
23.
Suhir
,
E.
,
2013
, “
Failure-Oriented-Accelerated-Testing (FOAT) and Its Role in Making a Viable IC Package Into a Reliable Product
,”
J. Mater. Sci.: Mater. Electron.
,
29
(
4
), pp.
2939
2948
.
24.
Suhir
,
E.
,
2023
, “
Failure-Oriented-Accelerated-Testing (FOAT) and Its Role in Assuring Electronics Reliability: Review
,”
Int. J. Phys. Res. Appl.
,
6
(
1
), pp.
1
18
.
25.
Suhir
,
E.
,
2014
, “
Three-Step Concept in Modeling Reliability: Boltzmann-Arrhenius-Zhurkov Physics-of-Failure Based Equation Sandwiched Between Two Statistical Models
,”
Microelectron. Reliab.
,
54
, pp.
2594
2603
.
26.
Suhir
,
E.
,
2021
,
Avoiding Inelastic Strains in Solder Joint Interconnections of IC Devices
,
CRC Press
,
Boca Raton, FL
.
27.
Suhir
,
E.
,
2000
, “
Microelectronics and Photonics—The Future
,”
Microelectron. J.
,
31
(
11–12
), pp.
839
851
.
28.
Love
,
E. H.
,
1906
,
Mathematical Theory of Elasticity
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
29.
Timoshenko
,
S.
, and
Goodier
,
J. N.
,
1961
,
Theory of Elasticity
, 2nd ed.,
McGraw-Hill
,
New York
.
30.
Nadai
,
A.
,
1931
,
Plasticity
,
McGraw-Hill
,
New York
.
31.
Liebowitz
,
H.
,
1968
,
Fracture
,
Academic Press
,
Cambridge, MA
.
32.
Rabotnov
,
Y. N.
,
1987
,
Introduction Into Mechanics of Fracture (in Russian)
,
Nauka
,
Moscow
.
33.
Timoshenko
,
S.
,
1928
,
Vibration Problems in Engineering
,
Van Nostrand Co
,
New York
.
34.
Timoshenko
,
S.
,
1930
,
Strength of Materials
,
Van Nostrand Co
,
New York
.
35.
Timoshenko
,
S.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
, 2nd ed.,
McGraw-Hill
,
New York
.
36.
Young
,
W. C.
,
1975
,
Roark’s Formulas for Stress and Strain
, 6th ed.,
McGraw-Hill
,
New York
.
37.
Suhir
,
E.
,
1991
,
Structural Analysis of Microelectronic and Fiber Optic Systems
,
Van Nostrand Co
,
New York
.
38.
Timoshenko
,
S. P.
,
1925
, “
Analysis of Bi-Metal Thermostats
,”
J. Opt. Soc. Am.
,
11
(
3
), pp.
233
243
.
39.
Laidler
,
K. J.
, and
Meiser
,
J. H.
,
1982
,
Physical Chemistry
, 1st ed.,
Benjamin/Cummings
,
San Francisco, CA
, pp.
376
–3
78
.
40.
Boltzmann
,
L.
,
1982
, “The Second Law of Thermodynamics,”
Theoretical Physics and Philosophical Problems. Vienna Circle Collection
, vol. 5,
B.
McGuinness
, ed.,
Springer
,
Dordrecht
.
41.
Suhir
,
E.
,
1986
, “
Stresses in Bi-Metal Thermostats
,”
ASME J. Appl. Mech.
,
53
(
3
), pp.
657
660
.
42.
Timoshenko
,
S.
, and
Woinowski-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
, 2nd ed.,
McGraw-Hill
,
New York
.
43.
Suhir
,
E.
,
1986
, “
Calculated Thermally Induced Stresses in Adhesively Bonded and Soldered Assemblies
,”
Proceedings of the International Symposium on Microelectronics
,
Atlanta, GA
,
Oct.
,
ISHM
, pp.
383
392
.
44.
Suhir
,
E.
,
1987
, “
Die Attachment Design and Its Influence on the Thermally Induced Stresses in the Die and the Attachment
,”
Proceedings of the 37th Electronics Components Conference, IEEE/ Electronic Industries Association (EIA)
,
Boston, MA
,
May
,
IEEE
, pp.
508
517
.
45.
Suhir
,
E.
,
2009
, “
On a Paradoxical Situation Related to Bonded Joints: Could Stiffer Mid-Portions of a Compliant Attachment Result in Lower Thermal Stress?
,”
J. Solid Mech. Mater. Eng.
,
3
(
7
), pp.
990
997
.
46.
Suhir
,
E.
,
2015
, “
Analysis of a Short Beam With Application to Solder Joints: Could Larger Stand-off Heights Relieve Stress?
,”
Eur. Phys. J. Appl. Phys.
,
71
, p.
31301
.
47.
Suhir
,
E.
, and
Reinikainen
,
T.
,
2008
, “
On a Paradoxical Situation Related to Lap Shear Joints: Could Transverse Grooves in the Adherends Lead to Lower Interfacial Stresses?
,”
J. Phys. D: Appl. Phys.
41
, pp.
1
10
.
48.
Reinikainen
,
T.
, and
Suhir
,
E.
,
2009
, “
Novel Shear Test Methodology for the Most Accurate Assessment of Solder Material Properties
,”
IEEE ECTC
,
San Diego, CA
,
May 26–29
, pp.
87
92
.
49.
Suhir
,
E.
, and
Reinikainen
,
T.
,
2010
, “
Interfacial Stresses in a Lap Shear Joint (LSJ): The “Transverse Groove Effect” (TGE) and the Predicted Peeling Stresses
,”
J. Solid Mech. Mater. Eng.
,
4
(
8
), pp.
1116
1130
.
50.
Suhir
,
E.
,
2002
, “
Apparatus and Method for Thermostatic Compensation of Temperature Sensitive Devices
,” US Patent No. #6,337,932.
51.
Kang
,
L.
,
Liu
,
T.
,
Su
,
Z.
, and
Kong
,
Y.
,
2004
, “
Research on Glass Ceramics With Negative Coefficient of Thermal Expansion Used as Fiber Bragg Grating Substrate
,”
Proceedings of SPIE 5280, Materials, Active Devices, and Optical Amplifiers
,
May
, pp.
638
643
.
52.
Marinis
,
T. F.
,
Reinert
,
R. C.
, and
Sherry
,
W. M.
,
1984
, “
Impact of External Lead Design on the Fracture of HIC-PWB Assemblies Subjected to Bending
,”
34th IEEE ECTC
,
New Orleans, LA
.
53.
Suhir
,
E.
,
1988
, “
On a Paradoxical Situation Related to Beams on Elastic Foundations: Could Compliant External Leads Reduce the Strength of a Surface Mounted Device?
,”
ASME J. Appl. Mech.
,
55
(
10
), pp.
818
821
.
54.
Suhir
,
E.
,
Bubel
,
G. M.
, and
Tuminaro
,
R. D.
,
1991
, “
Predicted Curvature of the Glass Fiber From the Measured Curvature of Its Coating
,”
IEEE/OSA J. Lightwave Technol.
,
9
(
6
), pp.
701
708
.
55.
Suhir
,
E.
,
1993
, “
Could the Curvature of an Optical Glass Fiber Be Different From the Curvature of Its Coating?
,”
Int. J. Solids Struct.
,
30
(
17
), pp.
2425
2435
.
56.
Suhir
,
E.
,
2001
, “
Device and Method of Controlling the Bowing of a Soldered or Adhesively Bonded Assembly
,” US Patent No. #6,239,382.
57.
Suhir
,
E.
,
Nicolics
,
J.
, and
Bechou
,
L.
,
2016
, “
Predicted Thermal Stresses in a Bow-Free Electronic Assembly for Automotive and Potential Aerospace Applications
,”
IEEE/AIAA Conference
,
Big Sky, MT
,
Mar.
, pp.
1
10
.
58.
Suhir
,
E.
,
2011
, “
Analysis of a Pre-Stressed Bi-Material Accelerated Life Test (ALT) Specimen
,”
ZAMM
,
91
(
5
), pp.
371
385
.
59.
Suhir
,
E.
, and
Nicolics
,
J.
,
2014
, “
Analysis of a Bow-Free Pre-Stressed Test Specimen
,”
ASME J. Appl. Mech.
,
81
(
11
), p.
114502
.
60.
Suhir
,
E.
,
Bensoussan
,
A.
, and
Nicolics
,
J.
,
2015
, “
Bow-Free Pre-Stressed ALT Specimen
,”
SAE Conference
,
Seattle, WA
,
Sept. 22–24
, pp.
1
10
.
61.
Luryi
,
S.
, and
Suhir
,
E.
,
1986
, “
A New Approach to the High-Quality Epitaxial Growth of Lattice-Mismatched Materials
,”
Appl. Phys. Lett.
,
49
(
3
), pp.
140
142
.
62.
Suhir
,
E.
,
2011
, “
Stresses in Bi-Material GaN Assemblies
,”
J. Appl. Phys.
,
110
(
7
), p.
074506
.
63.
Suhir
,
E.
,
2013
, “
Lattice-Misfit Stresses in a Circular Bi-Material Gallium-Nitride Assembly
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
014505
.
64.
Suhir
,
E.
,
2015
, “Predicted Thermal and Lattice-Mismatch Stresses,”
Handbook of Crystal Growth, Thin Films and Epitaxy
, 2nd ed., Vol.
3
,
T.
Nishinaga
, and
T. F.
Kuech
, eds.,
Elsevier
,
New York
, pp.
983
1005
.
65.
Suhir
,
E.
,
2016
, “
Predicted Lattice-Misfit Stresses in a Gallium-Nitride (GaN) Film
,”
International Reliability Physics Symposium (IRPS)
,
Pasadena, CA
,
Apr. 17–21
, p.
20
.
66.
Suhir
,
E.
,
Khatibi
,
G.
, and
Nicolics
,
J.
,
2015
, “
Predictive Modeling of the Lattice-Misfit Stresses in GaN Film Grown on a Circular Substrate
,”
MPPE Conference
,
Leoben, Austria
,
Nov. 3–5
.
67.
Suhir
,
E.
,
1996
, “
Dynamic Response of a One-Degree-of-Freedom Linear System to a Shock Load During Drop Tests: Effect of Viscous Damping
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part A
,
19
(
3
), pp.
435
440
.
68.
Zhou
,
C. Y.
,
Yu
,
T. X.
, and
Suhir
,
E.
,
2009
, “
Design of Shock Table Tests to Mimic Real-Life Drop Conditions
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
32
(
4
), pp.
832
837
.
69.
Suhir
,
E.
,
1996
, “
Shock-Excited Vibrations of a Conservative Duffing Oscillator With Application to Shock Protection in Portable Electronics
,”
Int. J. Solids Struct.
,
33
(
24
), pp.
3627
3642
.
70.
Suhir
,
E.
,
2020
, “
Predicted Accelerations of Surface-Mounted Electron Devices During Spacecraft Launch
,”
J. Aerosp. Mech.
,
4
(
2
), pp.
254
264
.
71.
Suhir
,
E.
,
1992
, “
Nonlinear Dynamic Response of a Flexible Thin Plate to Constant Acceleration Applied to Its Support Contour, With Application to Printed Circuit Boards Used in Avionic Packaging
,”
Int. J. Solids Struct.
,
29
(
1
), pp.
41
55
.
72.
Suhir
,
E.
,
1997
, “
Is the Maximum Acceleration an Adequate Criterion of the Dynamic Strength of a Structural Element in an Electronic Product?
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part A
,
20
(
4
), pp.
513
517
.
73.
Suhir
,
E.
,
1991
, “
Nonlinear Dynamic Response of a Flexible Printed Circuit Board to Shock Loads Applied to Its Support Contour
,”
1991 Proceedings 41st Electronic Components & Technology Conference
,
Atlanta, GA
,
May 11–16
, pp.
41
55
.
74.
Suhir
,
E.
,
1992
, “
Response of a Flexible Printed Circuit Board to Periodic Shock Loads Applied to Its Support Contour
,”
ASME J. Appl. Mech.
,
59
(
2
), pp.
253
259
.
75.
Suhir
,
E.
,
1997
, “
Dynamic Response of Microelectronics and Photonics Systems to Shocks and Vibrations
,”
ASME International Conference on Microelectronics and Photonics Packaging, INTERPack’97
,
Hawaii
,
June 15–19
.
76.
Suhir
,
E.
, and
Reinikainen
,
T.
,
2009
, “
Nonlinear Dynamic Response of a “Flexible-and-Heavy “Printed Circuit Board (PCB) to an Impact Load Applied to Its Support Contour
,”
J. Phys. D: Appl. Phys.
,
42
(
4
), p.
7
.
77.
Suhir
,
E.
, and
Arruda
,
L.
,
2010
, “
Could an Impact Load of Finite Duration Acting on a Duffing Oscillator Be Substituted With an Instantaneous Impulse?
,”
J. Solid Mech. Mater. Eng.
,
4
(
9
), pp.
1381
1397
.
78.
Suhir
,
E.
,
Steinberg
,
D.
, and
Yi
,
T.
,
2011
,
Dynamic Response of Electronic and Photonic Systems to Shocks and Vibrations
,
John Wiley & Sons
,
New York
.
79.
Suhir
,
E.
,
2011
, “
Predictive Modeling of the Dynamic Response of Electronic Systems to Shocks and Vibrations
,”
ASME Appl. Mech. Rev.
,
63
(
5
), p.
16
.
80.
Suhir
,
E.
,
2013
, “
Structural Dynamics of Electronics Systems
,”
Mod. Phys. Lett. B
,
27
(
7
), pp.
1793
6640
.
81.
Suhir
,
E.
,
2023
, “
Avoiding Inelastic Strains in Solder Joint Interconnections of Space Electronics
,”
ZAMM
,
103
(
2
), pp.
1
14
.
82.
Suhir
,
E.
,
2009
, “
Stretchable Electronics: Does One Need a Good Thermal Expansion Match Between the Si Die and the Plastic Carrier?
,”
59th IEEE ECTC
,
San Diego, CA
,
May 26–29
.
83.
Suhir
,
E.
,
2009
, “
Stretchable” Electronics: Does One Really Need a Good Thermal Expansion (Contraction) Match Between the Silicon Die and the Plastic Carrier?
,”
59th ECTC
,
San-Diego, CA
, pp. 713–719, Fraunhofer IZM Institute, Volume dedicated to the 60-th Birthday of Prof. B. Michel, Berlin, Germany.
84.
Suhir
,
E.
,
2011
, “
Predicted Stresses in Die-Carrier Assemblies in “Stretchable” Electronics: Is There an Incentive for Using a Compliant Bond?
,”
ZAMM
,
91
(
1
), pp.
57
67
.
85.
Suhir
,
E.
,
2012
, “
Predicted Response of the Die-Carrier Assembly to the Combined Action of Tension and Bending Applied to the Carrier in Flexible Electronics
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011010
.
86.
Christiaens
,
W.
,
Bosman
,
E.
, and
Vanfleteren
,
J.
,
2006
, “
Ultra-Thin Chip Package (UTCP): 60 µm Thick Bendable Chip Package
,”
European Microelectronics and Packaging Symposium, 4th, Proceedings
,
Terme Catez, Slovenia
, pp.
125
128
.
87.
Suhir
,
E.
,
1990
, “
Mechanical Approach to the Evaluation of the Low Temperature Threshold of Added Transmission Losses in Single-Coated Optical Fibers
,”
IEEE/OSA J. Lightwave Technol.
,
8
(
6
), pp.
863
868
.
88.
Suhir
,
E.
, and
Shakouri
,
A.
,
2012
, “
Assembly Bonded at the Ends: Could Thinner and Longer Legs Result in a Lower Thermal Stress in a Thermoelectric Module Design?
,”
ASME J. Appl. Mech.
,
79
(
6
), p.
061010
.
89.
Suhir
,
E.
, and
Shakouri
,
A.
,
2013
, “
Predicted Thermal Stresses in a Multi-Leg Thermoelectric Module (TEM) Design
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
021012
.
90.
Suhir
,
E.
,
2013
, “Thermal Stress in a Multi-Leg Thermoelectric Module (TEM) Design,”
Encyclopedia of Thermal Stresses
,
R.
Hetnarski
, ed.,
Springer
,
New York
.
91.
Suhir
,
E.
,
1988
, “
Spring Constant In the Buckling of Dual-Coated Optical Fibers
,”
IEEE/OSA J. Lightwave Technol.
,
6
(
7
), pp.
1240
1244
.
92.
Suhir
,
E.
,
1988
, “
Effect of Initial Curvature on Low Temperature Microbending in Optical Fibers
,”
IEEE/OSA J. Lightwave Technol.
,
6
(
8
), pp.
1321
1327
.
93.
Suhir
,
E.
,
1992
, “
Elastic Stability, Free Vibrations, and Bending of Optical Glass Fibers: The Effect of the Nonlinear Stress-Strain Relationship
,”
Appl. Opt.
,
31
(
24
), pp.
5080
5085
.
94.
Suhir
,
E.
,
1992
, “
The Effect of the Nonlinear Behavior of the Material on Two-Point Bending in Optical Glass Fibers
,”
ASME J. Electron. Packag.
,
114
(
2
), pp.
246
250
.
95.
Suhir
,
E.
,
Mishkevich
,
V.
, and
Anderson
,
J.
,
1995
, “How Large Should a Periodic External Load Be to Cause Appreciable Microbending Losses in a Dual-Coated Optical Fiber?,”
Structural Analysis in Microelectronics and Fiber Optics
,
E.
Suhir
, ed., Symposium Proceedings,
ASME Press
.
96.
Suhir
,
E.
,
1998
, “
Critical Strain and Post-Buckling Stress in Polymer Coated Optical Fiber Interconnect: What Could Be Gained by Using Thicker Coating?
,”
International Workshop on Reliability of Polymeric Materials and Plastic Packages of IC Devices
,
Paris
,
Nov. 29–Dec. 2
,
ASME Press
.
97.
Suhir
,
E.
,
1998
, “
Optical Fiber Interconnect Subjected to a Not-Very-Small Ends Off-Set: Effect of the Reactive Tension
,”
Mater. Res. Soc. Symp. Proc.
,
531
, pp.
201
207
.
98.
Suhir
,
E.
,
2000
, “
Optical Fiber Interconnect With the Ends Offset and Axial Loading: What Could Be Done to Reduce the Tensile Stress in the Fiber?
,”
J. Appl. Phys.
,
88
(
7
), pp.
3865
3871
.
99.
Suhir
,
E.
,
2003
, “
Optical Fiber Interconnects Having Offset Ends With Reduced Tensile Strength and Fabrication Method
,” US Patent No. #6,606,434.
100.
Suhir
,
E.
,
2014
, “
Fiber Optics Engineering: Physical Design for Reliability
,”
Facta Univ. Ser.: Mech. Eng.
,
27
(
2
), pp.
153
182
.
101.
Suhir
,
E.
,
1990
, “
Buffering Effect of Fiber Coating and Its Influence on the Proof-Test Load in Optical Fibers
,”
Appl. Opt.
,
29
(
18
), pp.
2682
2685
.
102.
Suhir
,
E.
,
1994
, “
Pull Testing of a Glass Fiber Soldered Into a Ferrule: How Long Should the Test Specimen Be?
,”
Appl. Opt.
,
33
(
19
), pp.
4109
4112
.
103.
Suhir
,
E.
,
1998
, “
Bending Stress in an Optical Fiber Interconnect Experiencing Significant Ends Off-Set
,”
MRS Symposium Proceedings
,
San Francisco, CA
,
Apr. 13–15
, Vol.
531
.
104.
Suhir
,
E.
,
1998
, “
Optical Fiber Interconnect Subjected to a Not-Very-Small Ends Off-Set: Effect of the Reactive Tension
,”
MRS Symposium Proceedings
,
San Francisco, CA
,
Apr. 13–15
, Vol.
531
.
105.
Suhir
,
E.
,
1998
, “
Coated Optical Fiber Interconnect Subjected to the Ends Off-Set and Axial Loading
,”
International Workshop on Reliability of Polymeric Materials and Plastic Packages of IC Devices
,
Paris
,
Nov. 29–Dec. 2,
ASME Press
.
106.
Suhir
,
E.
, and
Bechou
,
L.
,
2013
, “
Saint-Venant’s Principle and the Minimum Length of a Dual-Coated Optical Fiber Specimen in Reliability (Proof) Testing
,”
Microelectron. Reliab.
,
53
(
9–11
), pp.
1506
1509
.
107.
Suhir
,
E.
,
1985
, “
Linear and Nonlinear Vibrations Caused by Periodic Impulses
,”
AIAA/ASME/ASCE/AHS 26th Structures, Structural Dynamics and Materials Conference
,
Orlando, FL
,
Apr. 15–17
.
108.
Suhir
,
E.
, and
Poborets
,
B.
,
1990
, “
Solder Glass Attachment in Cerdip/Cerquad Packages: Thermally Induced Stresses and Mechanical Reliability
,”
ASME J. Electron. Packag.
,
112
(
2
), pp.
204
209
.
109.
Suhir
,
E.
,
1997
,
Applied Probability for Engineers and Scientists
,
McGraw-Hill
,
New York
.
110.
Suhir
,
E.
,
2010
, “
Probabilistic Design for Reliability
,”
Chip Scale Rev.
,
14
(
6
), pp.
24
28
.
111.
Suhir
,
E.
,
Mahajan
,
R.
,
Lucero
,
A.
, and
Bechou
,
L.
,
2012
, “
Probabilistic Design for Reliability (PDfR) and a Novel Approach to Qualification Testing(QT)
,”
IEEE/AIAA Aerospace Conference
,
Big Sky, MT
,
Mar. 3–10
.
112.
Suhir
,
E.
,
2012
, “
Electronic Product Qual Specs Should Consider Its Most Likely Application(s)
,”
Chip Scale Rev.
,
16
(
4
) pp.
1
8
.
113.
Suhir
,
E.
,
Bechou
,
L.
, and
Bensoussan
,
A.
,
2012
, “
Technical Diagnostics in Electronics: Application of Bayes Formula and Boltzmann-Arrhenius-Zhurkov Model
,”
Circuit Assem.
,
29
(
12
), pp.
25
28
.
114.
Suhir
,
E.
,
2014
, “
Reliability Physics and Probabilistic Design for Reliability (PDfR): Role, Attributes, Challenges
,”
IEEE EPTC 2014
,
Singapore
,
Nov. 5
.
115.
Suhir
,
E.
,
2016
, “
Could Electronics Reliability Cannot Be Assured, if It Is Not Quantified
,”
J. Phys. Math.
,
7
(
1
), p.
1
.
116.
Suhir
,
E.
, and
Bensoussan
,
A.
,
2014
, “
Quantified Reliability of Aerospace Optoelectronics
,”
SAE Int. J. Aerosp.
,
7
(
1
), pp.
65
74
.
117.
Suhir
,
E.
,
Bensoussan
,
A.
,
Khatibi
,
G.
, and
Nicolics
,
J.
,
2015
, “
Probabilistic Design for Reliability in Electronics and Photonics: Role, Significance, Attributes, Challenges
,”
Proceedings of the IEEE International Reliability Physics Symposium (IRPS)
,
Monterey, CA
,
Apr. 19–23
.
118.
Suhir
,
E.
,
2017
, “
Aerospace Electronics Reliability Prediction: Application of Two Advanced Probabilistic Techniques
,”
ZAMM
,
98
(
5
), pp.
824
839
.
119.
Suhir
,
E.
, and
Ghaffarian
,
R.
,
2018
, “
Constitutive Equation for the Prediction of an Aerospace Electron Device Performance-Brief Review
,”
Aerospace
,
5
(
74
).
120.
Ponomarev
,
A.
, and
Suhir
,
E.
,
2019
, “
Predicted Useful Lifetime of Aerospace Electronics Experiencing Ionizing Radiation: Application of BAZ Model
,”
J. Aerosp. Eng. Mech.
,
3
(
1
), pp.
167
169
.
121.
Suhir
,
E.
,
2019
, “
Failure-Oriented-Accelerated-Testing (FOAT), Boltzmann-Arrhenius-Zhurkov Equation (BAZ) and Their Application in Microelectronics and Photonics Reliability Engineering
,”
Int. J. Aeronaut. Sci. Aerosp. Res.
,
6
(
3
), pp.
185
191
.
122.
Suhir
,
E.
,
2022
, “
Electronic Packaging Reliability Physics, and the Role of Failure-Oriented-Accelerated-Testing
,”
Acta Sci. Appl. Phys.
,
2
(
12
) pp.
1
2
.
123.
Suhir
,
E.
,
2020
, “
Aerospace Electronics Reliability Must Be Quantified to Be Assured: Application of the Probabilistic Design for Reliability Concept
,”
Int. J. Aeronaut. Sci. Aerosp. Res.
,
7
(
3
), pp.
235
243
.
124.
Suhir
,
E.
,
2021
, “
Expected Lifetime of an Optical Silica Fiber Intended for Open Space Applications: Probabilistic Predictive Model
,”
Acta. Astronaut.
,
192
, pp.
418
423
.
125.
Suhir
,
E.
,
2022
, “
Spacecraft Electronics: Useful Lifetime vs. Probability-of-Failure
,”
Res. Rev. J. Mod. Phys.
,
1
.
126.
Suhir
,
E.
,
2022
, “
Predicted Low-Cycle Fatigue Lifetime of Solder Joint Interconnections: Application of Hall’s Approach and Boltzmann-Arrhenius-Zhurkov (BAZ) Model
,”
J. Aerosp. Eng. Mech.
,
6
(
1
), pp.
499
502
.
127.
Suhir
,
E.
,
2019
, “
To Burn-In, or Not to Burn-in: That’s the Question
,”
Aerospace
,
6
(
3
), p.
13
.
128.
Suhir
,
E.
,
2019
, “
For How Long Should Burn-in Testing Last?
,”
J. Electr. Electron. Syst.
,
8
(
2
), p.
4
.
129.
Suhir
,
E.
,
2020
, “
Is Burn-in Always Needed?
,”
Int. J. Adv. Res. Electr. Electron. Instrum. Eng.
,
9
(
1
), pp.
2751
2757
.
130.
Suhir
,
E.
,
2022
, “
Predictive Modeling Sheds Light on Burn-in Testing (BIT) of IC Devices: Brief Review and Recent Extension
,”
Microelectron. Reliab.
,
128
, p.
114371
.
131.
Salotti
,
J.-M.
, and
Suhir
,
E.
,
2014
, “
Manned Missions to Mars: Minimizing Risks of Failure
,”
Acta Astronaut.
,
93
, pp.
148
161
.
132.
Suhir
,
E.
,
2019
, “
Assessment of the Required Human Capacity Factor (HCF) Using Flight Simulator as an Appropriate Accelerated Test Vehicle
,”
Int. J. Human Factor Model. Simul.
,
7
(
1
), pp.
71
74
.
133.
Suhir
,
E.
,
2019
, “
Adequate Trust, Human-Capacity-Factor, Probability-Distribution-Function of Human Non-Failure and Its Entropy
,”
Int. J. Human Factor Model. Simul.
,
7
(
1
), pp.
75
83
.
134.
Suhir
,
E.
,
2020
, “
Risk-Analysis in Aerospace Human-Factor-Related Tasks: Review and Extension
,”
J. Aerosp. Eng. Mech.
,
4
(
2
), pp.
265
272
.
135.
Suhir
,
E.
,
2020
, “
Boltzmann-Arrhenius-Zhurkov Equation and Its Applications in Electronic-and-Photonic Aerospace Materials Reliability-Physics Problems
,”
Int. J. Aeronaut. Sci. Aerosp. Res.
,
7
(
1
), pp.
210
223
.
136.
Suhir
,
E.
,
2020
, “
“Quanifying Unquantifiable” in Aerospace Electronics and Ergonomics Engineering: Review
,”
J. Aerosp. Eng. Mech.
,
4
(
2
), pp.
306
347
.
137.
Suhir
,
E.
,
2021
, “
Astronaut’s Performance vs. His/Hers Human-Capacity-Factor and State-of-Health: Application of Double-Exponential-Probability-Distribution Function
,”
Acta Astronaut.
,
178
, pp.
250
256
.
138.
Suhir
,
E.
,
2020
, “
Survivability of Species in Different Habitats: Application of Multi-Parametric Boltzmann-Arrhenius-Zhurkov Equation
,”
Acta Astronaut.
175
, pp.
249
253
.
139.
Suhir
,
E.
,
2021
, “
Landing on Mars: Probabilistic Modeling Enables Quantifying the Last “Six Minutes of Terror”
,”
Acta Astronaut.
,
179
, pp.
680
684
.
140.
Suhir
,
E.
,
2021
, “
Braking Power Required for Safe Landing: Probabilistic Approach
,”
Acta Astronaut.
188
, pp.
394
396
.
141.
Suhir
,
E.
,
2022
, “
Probabilistic Fitts’ Law and the Likelihood of a Spacecraft Collision With an Asteroid
,”
AIAA J. Inf. Sci.
,
19
(
10
), pp.
185
191
.
142.
Suhir
,
E.
,
2023
, “
Probabilistic Fitts’ Law and the Likelihood of the Tunguska Event
,”
J. Space Safety Eng.
,
10
(
1
), pp.
59
65
.
143.
Suhir
,
E.
,
2021
, “
When Instrumentation and Human Performance Contribute Jointly to the Outcome of a Human-System-Integration (HIS) Mission: Brief Review
,”
Paper #150, 2021 International Ergonomics Associate Triennial (IEA) Conference
,
Vancouver, CA
,
June 13–18
, Track on System Human Factor and Ergonomics, Vol. 219, Lecture Notes in Networks and Systems Series.
144.
Suhir
,
E.
, and
Stamenkovic
,
Z.
,
2020
, “
Using Yield to Predict Long-Term Reliability of Integrated Circuit (IC) Devices: Application of Boltzmann-Arrhenius-Zhurkov (BAZ) Model
,”
Solid-State Electron.
,
164
, p.
107746
.
145.
Suhir
,
E.
,
2015
, “
Analytical Bathtub Curve With Application to Electron Device Reliability
,”
J. Mater. Sci.: Mater. Electron.
,
26
(
9
), pp.
6633
6638
.
146.
Suhir
,
E.
,
2015
, “
Analytical Stress Modeling for TSVs in 3D Packaging
,”
2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)
,
San-Jose
,
Mar. 15–19
, pp.
99
106
.
147.
Suhir
,
E.
,
1989
, “
Analytical Modeling in Electronic Packaging Structures: Its Merits, Shortcomings and Interaction With Experimental and Numerical Techniques
,”
ASME J. Electron. Packag.
,
111
(
2
), pp.
157
161
.
148.
Suhir
,
E.
,
1991
, “
Mechanical Behavior of Materials in Microelectronic and Fiber Optic Systems: Application of Analytical Modeling-Review
,”
MRS Symposium Proceedings
,
Boston, MA
,
Dec. 2–6
, Vol.
226
.
149.
Suhir
,
E.
,
2002
, “
Analytical Stress-Strain Modeling in Photonics Engineering: Role, Attributes and Interaction With Finite-Element Method
,”
Laser Focus World
,
14
, pp.
611
615
.
150.
Suhir
,
E.
,
2019
, “Application of Analytical Modeling in the Design for Reliability of Electronic Packages and Systems,”
Springer Encyclopedia of Continuum Mechanics
,
H.
Altenbach
, and
A.
Oechsner
, eds., pp.
110
119
.
151.
Suhir
,
E.
,
2015
, “
Analytical Predictive Modeling in Fiber Optics Structural Analysis: Review and Extension
,”
SPIE Conference
,
San-Francisco, CA
,
Feb. 10
.
152.
Suhir
,
E.
,
Raskin
,
Y.
, and
Tunik
,
F.
,
1982
, “
Russian Strength Standards for Commercial Ships
,” Paper Presented at the Chesapeake Section, 10 March 1982, Society of Naval Architects and Marine Engineers (S.N.A.M.E.),
American Bureau of Shipping (ABS)
.
153.
Stoney
,
G. G.
,
1909
, “
The Tension of Metallic Films Deposited by Electrolysis
,”
Proc. R. Soc. A
,
82
(
553
), pp.
172
175
.
154.
Aleck
,
B. J.
,
1949
, “
Thermal Stresses in a Rectangular Plate Clamped Along the Edge
,”
ASME J. Appl.Mech.
,
16
(
2
), pp.
118
122
.
155.
Coffin
,
L. F.
, Jr.
,
1954
, “
A Study on the Effect of Cyclic Thermal Stresses on a Ductile Metal
,”
ASME J. Appl. Mech.
,
76
(
5
), pp.
931
949
.
156.
Boley
,
B. A.
, and
Weiner
,
J. H.
,
1960
,
Theory of Thermal Stresses
,
Wiley
,
New York
.
157.
Riney
,
T. D.
,
1961
, “
Residual Thermo-Elastic Stresses in Bonded Silicon Wafers
,”
J. Appl. Phys.
,
32
(
3
), p.
460
.
158.
Manson
,
S. S.
,
1965
, “
Fatigue: A Complex Subject—Some Simple Approximations
,”
Exp. Mech.
,
5
(
7
), pp.
193
226
.
159.
Parkus
,
H.
,
1968
,
Thermo-elasticity
,
Blaisdell
,
New York
.
160.
Lang
,
G. A.
,
Fehder
,
B. J.
, and
Williams
,
W. D.
,
1970
, “
Thermal Fatigue in Silicon Power Devices
,”
IEEE Trans. Electron Devices
,
17
(
9
), pp.
787
793
.
161.
Grimado
,
P. B.
,
1978
, “
Inter-Laminar Thermo-Elastic Stresses in Layered Beams
,”
J. Therm. Stresses
,
1
(
1
), pp.
75
86
.
162.
Chen
,
W. T.
, and
Nelson
,
C. W.
,
1979
, “
Thermal Stresses in Bonded Joints
,”
IBM J. Res. Dev.
,
23
(
2
), pp.
179
188
.
163.
Suhir
,
E.
,
1988
, “Thermal Stress Failures in Microelectronic Components—Review and Extension,”
Advances in Thermal Modeling of Electronic Components and Systems
,
A.
Bar-Cohen
, and
A. D.
Kraus
, eds.,
Hemisphere
,
New York
, pp.
337
412
.
164.
Suhir
,
E.
,
2001
, “
Thermal Stress in a Polymer Coated Optical Glass Fiber With a Low Modulus Coating at the Ends
,”
J. Mat. Res.
,
16
(
10
), pp.
2996
3004
.
165.
Suhir
,
E.
,
1988
, “
An Approximate Analysis of Stresses in Multilayered Thin Films
,”
ASME J. Appl. Mech.
,
55
(
1
), pp.
143
148
.
166.
Suhir
,
E.
,
1989
, “
Interfacial Stresses in Bi-Metal Thermostats
,”
ASME J. Appl. Mech.
,
56
(
3
), pp.
595
600
.
167.
Kuo
,
A.-Y.
,
1989
, “
Thermal Stresses at the Edge of a Bi-Metallic Thermostat
,”
ASME J. Appl. Mech.
,
56
(
3
), pp.
585
589
.
168.
Sumi
,
S.
,
Ohga
,
K.
, and
Shirai
,
K.
,
1989
, “
Thermal Fatigue of Large Scale Package Type Power Transistor Modules
,”
Proceedings of the International Symposium for Testing and Failure Analysis (ISTFA)
,
Los Angeles, CA
, pp.
309
322
.
169.
Lau
,
J. H.
,
Rice
,
W. D.
, and
Harkins
,
G.
,
1990
, “
Thermal Stress Analysis of TAB Packages and Interconnections
,”
IEEE CPMT Trans.
,
13
(
1
), pp.
456
463
.
170.
Daniel
,
I. M.
,
Wang
,
T. M.
, and
Gotro
,
J. T.
,
1990
, “
Thermo-Mechanical Behavior of Multilayer Structures in Microelectronics
,”
ASME J. Electron. Packag.
,
112
(
1
), pp.
11
15
.
171.
Morgan
,
H. S.
,
1991
, “
Thermal Stresses in Layered Electronic Assemblies Bonded With Solder
,”
ASME J. Electron. Packag.
,
113
(
4
), pp.
350
354
.
172.
Lau
,
J. H.
,
1991
,
Solder Joint Reliability: Theory and Applications
,
Van-Nostrand Reinhold
,
New York
.
173.
Lau
,
J. H.
,
1993
,
Thermal Stress and Strain in Microelectronics Packaging
,
Van-Nostrand Reinhold
,
New York
.
174.
Suhir
,
E.
,
1995
, ““Global” and “Local” Thermal Mismatch Stresses in an Elongated Bi-Material Assembly Bonded at the Ends,”
Structural Analysis in Microelectronic and Fiber-Optic Systems, Symposium Proceedings
,
E.
Suhir
, ed.,
ASME Press
,
New York
, pp.
101
105
.
175.
Jiang
,
Z.-Q.
,
Huang
,
Y.
, and
Chandra
,
A.
,
1997
, “
Thermal Stresses in Layered Electronic Assemblies
,”
ASME J. Electron. Packag.
,
119
(
2
), pp.
127
132
.
176.
Suhir
,
E.
,
1999
, “
Thermal Stress Failures in Microelectronics and Photonics: Prediction and Prevention
,”
Future Circuits Int.
,
5
, pp.
83
89
.
177.
Suhir
,
E.
,
2001
, “
Predicted Thermal Stresses in a Bi-Material Assembly Adhesively Bonded at the Ends
,”
J. Appl. Phys.
,
89
(
1
), pp.
120
129
.
178.
Suhir
,
E.
,
2001
, “
Analysis of Interfacial Thermal Stresses in a Tri-Material Assembly
,”
J. Appl. Phys.
,
89
(
7
), pp.
3685
3694
.
179.
Suhir
,
E.
,
2002
, “
Bi-Material Assembly Bonded at the Ends and Fabrication Method
,” US Patent No. #6,460,753.
180.
Suhir
,
E.
,
2003
, “
Modeling of Thermal Stress in Microelectronic and Photonic Structures: Role, Attributes, Challenges, and Brief Review
,”
ASME J. Electron. Packag.
,
125
(
2
), pp.
261
267
.
181.
Tsai
,
M. Y.
,
Hsu
,
C. H.
, and
Han
,
C. N.
,
2004
, “
A Note on Suhir’s Solution of Thermal Stresses for a Die-Substrate Assembly
,”
ASME J. Electron. Packag.
126
(
1
), pp.
115
119
.
182.
Suhir
,
E.
,
2005
, “
Analytical Thermal Stress Modeling in Physical Design for Reliability of Micro- and Opto-Electronic Systems: Role, Attributes, Challenges, Results
,”
Therminic
,
Lago Maggiore, Italy
,
Sept. 27–30
, pp.
84
97
.
183.
Suhir
,
E.
,
2006
, “
Interfacial Thermal Stresses in a Bi-Material Assembly With a Low-Yield-Stress Bonding Layer
,”
Model. Simul. Mater. Sci. Eng.
,
14
(
8
), pp.
1421
1432
.
184.
Suhir
,
E.
,
2009
, “
Analytical Thermal Stress Modeling in Electronic and Photonic Systems
,”
ASME Appl. Mech. Rev.
,
62
(
4
), pp.
215
223
.
185.
Gao
,
J.-L.
,
Du
,
Q.-G.
,
Zhang
,
X.-D.
, and
Jiang
,
X.-Q.
,
2011
, “
Thermal Stress Analysis and Structure Parameter Selection for a Be2Te3-Based Thermoelectric Module
,”
J. Electron. Mater.
,
40
(
5
), pp.
884
888
.
186.
Hetnarski
,
R.
,
2013
,
Encyclopedia of Thermal Stresses
,
Springer
,
New York
.
187.
Suhir
,
E.
,
2013
, “
Thermal Stress Failures in Electronics and Photonics: Physics, Modeling, Prevention
,”
J. Therm. Stresses
,
36
(
6
), pp.
537
563
. 10th Int. Congress on Thermal Stresses, Nanjing, China, May 31-June 4.
188.
Suhir
,
E.
,
2001
, “
Analysis of Interfacial Thermal Stresses in a Tri-Material Assembly
,”
J. Appl. Phys.
,
89
(
7
), pp.
3685
3694
.
189.
Tsai
,
M. Y.
,
Liu
,
G. M.
,
Wang
,
Y. W.
, and
Liu
,
H. Y.
,
2018
, “
Effects of Metal Frame and Adhesive on Thermally Induced Warpage and Stress of 2.5D Packages: Experimental and Numerical Studies
,”
IEEE Trans. Device Mater. Reliab.
,
18
(
3
), pp.
450
455
.
190.
Nowacky
,
W.
,
1976
,
Dynamic Problems of Thermo-Elasticity
,
Pergamon Press
,
New York
.
191.
Suhir
,
E.
,
Gu
,
C.
, and
Cao
,
L.
,
2012
, “
Predicted Thermal Stress in a Circular Adhesively Bonded Assembly With Identical Adherends
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011011
.
192.
Suhir
,
E.
,
2009
, “
Thermal Stress in a Bi-Material Assembly With a “Piecewise-Continuous” Bonding Layer: Theorem of Three Axial Forces
,”
J. Phys. D: Appl. Phys.
,
42
, p.
8
.
193.
Suhir
,
E.
,
2000
, “
Adhesively Bonded Assemblies With Identical Non-Deformable Adherends and “Piecewise Continuous” Adhesive Layer: Predicted Thermal Stresses and Displacements in the Adhesive
,”
Int. J. Solids Struct.
,
37
(
16
), pp.
2229
2252
.
194.
Suhir
,
E.
,
1998
, “
Adhesively Bonded Assemblies With Identical Non-Deformable Adherends and Inhomogeneous Adhesive Layer: Predicted Thermal Stresses in the Adhesive
,”
J. Reinf. Plast. Compos.
,
17
(
14
), pp.
1588
1606
.
195.
Suhir
,
E.
,
1999
, “
Adhesively Bonded Assemblies With Identical Non-Deformable Adherends: Predicted Thermal Stresses in the Adhesive Layer
,”
Compos. Interfaces
,
6
(
2
), pp.
135
154
.
196.
Suhir
,
E.
,
2000
, “
Predicted Stresses in, and the Bow of, a Circular Substrate/Thin-Film System Subjected to the Change in Temperature
,”
J. Appl. Phys.
,
88
(
5
), p.
2370
.
197.
Suhir
,
E.
, and
Weld
,
J.
,
1997
, “
Electronic Package with Reduced Bending Stress
,” US Patent No. #5,627,407.
198.
Suhir
,
E.
,
1996
, “
Flex Circuit vs Regular” Substrate: Predicted Reduction in the Shearing Stress in Solder Joints
,”
Proceedings of the Third International Conference on Flexible Circuits (FLEXCON 96)
,
San Jose, CA
,
Oct.
199.
Suhir
,
E.
,
Bechou
,
L.
, and
Levrier
,
B.
,
2013
, “
Predicted Size of an Inelastic Zone in a Ball-Grid-Array Assembly
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
021007
.
200.
Suhir
,
E.
,
Ghaffarian
,
R.
, and
Nicolics
,
J.
,
2015
, “
Could Application of Column-Grid-Array Technology Result in Inelastic-Strain-Free State-of-Stress in Solder Material?
,”
J. Mater. Sci.: Mater. Electron.
,
26
(
12
), pp.
10062
10067
.
201.
Suhir
,
E.
, and
Ghaffarian
,
R.
,
2015
, “
Predicted Stresses in a Ball-Grid-Array(BGA)/Column-Grid-Array (CGA) Assembly With a Low Modulus Solder at Its Ends
,”
J. Mater. Sci.: Mater. Electron.
,
26
(
12
), pp.
9680
9688
.
202.
Suhir
,
E.
,
Ghaffarian
,
R.
, and
Nicolics
,
J.
,
2016
, “
Could Thermal Stresses in an Inhomogeneous BGA/CGA System Be Predicted Using a Model for a Homogeneously Bonded Assembly?
,”
J. Mater. Sci.: Mater. Electron.
,
27
(
1
), pp.
570
579
.
203.
Suhir
,
E.
,
2016
, “
Expected Stress Relief in a Bi-Material Inhomogeneously Bonded Assembly With a Low- Modulus-and/or-Low-Fabrication-Temperature Bonding Material at the Ends
,”
J. Mater. Sci.: Mater. Electron.
,
27
(
6
), pp.
5563
5574
.
204.
Suhir
,
E.
,
Ghaffarian
,
R.
,
Bechou
,
L.
, and
Nicolics
,
J.
,
2016
, “
Column-Grid-Array (CGA) Technology Could Lead to a Highly Reliable Package Design
,”
IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 5–12
, pp.
1
8
.
205.
Suhir
,
E.
,
Ghaffarian
,
R.
, and
Nicolics
,
J.
,
2016
, “
Predicted Stresses in Ball-Grid-Array (BGA) and Column-Grid-Array (CGA) Interconnections in a Mirror-Like Package Design
,”
J. Mater. Sci.: Mater. Electron.
,
27
(
3
), pp.
2430
2441
.
206.
Suhir
,
E.
,
2018
, “
Low-Cycle-Fatigue Failures of Solder Material in Electronics: Analytical Modeling Enables to Predict and Possibly Prevent Them—Review
,”
J. Aerosp. Eng. Mech.
,
2
(
1
), pp.
134
151
.
207.
Suhir
,
E.
, and
Ghaffarian
,
R.
,
2018
, “
Flip-Chip (FC) and Fine-Pitch-Ball-Grid-Array (FPBGA) Underfills for Application in Aerospace Electronics Packages—Brief Review
,”
Aerospace
,
5
(
3
), p.
74
.
208.
Suhir
,
E.
,
2021
, “
Inhomogeneous Bonding in Low-Temperature-Soldering: Brief Review
,”
J. Electron. Sens.
,
4
(
1
), pp.
1
4
.
209.
Suhir
,
E.
,
1993
, “
Predicted Bow of Plastic Packages of Integrated Circuit (IC) Devices
,”
50th SPE Conference
,
SPE
,
Detroit, MI
,
May 1992
; See Also a Chapter in J. H. Lau, ed., Thermal Stress and Strain in Microelectronic Packaging,” Van Nostrand Reinhold, New York.
210.
Steinberg
,
D. S.
,
2000
,
Vibration Analysis for Electronic Equipment
, 3rd ed.,
Wiley
,
New York
.
211.
Suhir
,
E.
,
1997
, “
Failure Criterion for Moisture-Sensitive Plastic Packages of Integrated Circuit (IC) Devices: Application of von-Karman Equations With Consideration of Thermoelastic Strains
,”
Int. J. Solids Struct.
,
34
(
12
), pp.
2991
3019
.
212.
Andrews
,
E. H.
, and
Kinloch
,
A. J.
,
1974
, “
Mechanics of Elastomeric Adhesion
,”
J. Polym. Sci.
,
46
(
1
), pp.
1
14
.
213.
Kinloch
,
J.
,
1987
,
Adhesion and Adhesives: Science and Technology
,
Chapman and Hall
,
London
.
214.
Taylor
,
H. F.
,
1988
,
Advances in Fiber Optics Communications
,
Artech House
,
Norwood, MA
.
215.
Pizzi
,
A.
, and
Mittal
,
K. L.
,
2017
,
Handbook of Adhesive Technology
,
CRC Press
,
Boca Raton, FL
.
216.
Suhir
,
E.
, and
Arruda
,
L.
,
2009
, “
The Coordinate Function in the Problem of the Nonlinear Dynamic Response of an Elongated Printed Circuit Board (PCB) to a Drop Impact Applied to Its Support Contour
,”
Eur. J. Appl. Phys.
,
48
(
2
), p.
9
.
217.
Suhir
,
E.
,
1994
, “
Thermally Induced Stresses in an Optical Glass Fiber Soldered Into a Ferrule
,”
IEEE/OSA J. Lightwave Technol.
,
12
(
10
), pp.
1766
1770
.
218.
Suhir
,
E.
,
2013
, “
Could Electronics Reliability De Predicted, Quantified and Assured?
,”
Microelectron. Reliab.
,
53
(
7
), pp.
925
936
.
219.
Suhir
,
E.
,
2018
, “
Aerospace Mission Outcome: Predictive Modeling
,”
Aerospace
,
5
(
2
), p.
56
.
220.
Suhir
,
E.
,
1995
, “
Shock Protection With a Nonlinear Spring
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part B
,
18
(
2
), pp.
430
437
.
You do not currently have access to this content.