Abstract

Finite element (FE) methods have been extensively used to simulate the effects of material’s microstructure during machining processes. However, determination of the individual microstructure phase stress–strain curves is experimentally intensive and difficult to measure. Furthermore, these curves were also affected by heat treatment processes, chemical composition, and the percentage of individual microstructure phases. The objective of this paper is to develop and validate the Micromechanical Adaptive Iteration Algorithm to calculate the individual ferrite and martensite plastic behavior for dual-phase (DP) steel. This method requires a minimum of three experimental stress–strain curves from the same material with three different martensite volume fractions (Vm). Two of the stress–strain curves with different Vm are required to initialize the iteration algorithm to predict the individual plastic behavior of ferrite and martensite. The third stress–strain curve is used to validate the plastic behavior of individual ferrite and martensite for the given DP steel. Following on from here, the proposed algorithm was validated with two different grades of DP steel with 0.088%C and 0.1%C. Validation results show that the approach has consistent prediction capabilities, and the maximum difference observed between predicted and experimental results was 6.5%. The simulated results also show that the degree of strain partitioning between ferrite and martensite decreases with Vm.

References

1.
Arrazola
,
P. J.
,
Özel
,
T.
,
Umbrello
,
D.
,
Davies
,
M.
, and
Jawahir
,
I. S.
,
2013
, “
Recent Advances in Modelling of Metal Machining Processes
,”
CIRP Ann.—Manuf. Technol.
,
62
(
2
), pp.
695
718
.
2.
Abouridouane
,
M.
,
Klocke
,
F.
,
Oktafiani
,
A.
, and
Döbbeler
,
B.
,
2017
, “
Microstructure-Based FEM Simulation of Metal Cutting
,”
Procedia CIRP
,
58
, pp.
85
90
.
3.
Mabrouki
,
T.
,
Courbon
,
C.
,
Fabre
,
D.
,
Arrieta
,
I.
,
Arrazola
,
P. J.
, and
Rech
,
J.
,
2017
, “
Influence of Microstructure on Chip Formation When Broaching Ferritic-Pearlitic Steels
,”
Procedia CIRP
,
58
, pp.
43
48
.
4.
Simoneau
,
A.
,
Ng
,
E.
, and
Elbestawi
,
M. A.
,
2007
, “
Grain Size and Orientation Effects When Microcutting AISI 1045 Steel
,”
CIRP Ann.—Manuf. Technol.
,
56
(
1
), pp.
57
60
.
5.
Abouridouane
,
M.
,
Klocke
,
F.
,
Lung
,
D.
, and
Adams
,
O.
,
2012
, “
A New 3D Multiphase FE Model for Micro Cutting Ferritic-Pearlitic Carbon Steels
,”
CIRP Ann.—Manuf. Technol.
,
61
(
1
), pp.
71
74
.
6.
Tomota
,
Y.
,
Umemoto
,
M.
,
Komatsubara
,
N.
,
Hiramatsu
,
A.
,
Nakajima
,
N.
,
Moriya
,
A.
,
Watanabe
,
T.
, et al
,
1992
, “
Prediction of Mechanical Properties of Multi-Phase Steels Based on Stress-Strain Curves
,”
ISIJ Int.
,
32
(
3
), pp.
343
349
.
7.
Thomas Hüper
,
K. O.
,
Endo
,
S.
, and
Ishikawa
,
N.
,
1999
, “
Effect of Volume Fraction of Constituent Phases on the Stress-Strain Relationship of Dual Phase Steels
,”
Iron Steel Inst. Japan Int.
,
39
(
3
), pp.
288
294
.
8.
Rodriguez
,
R.
, and
Gutierrez
,
I.
,
2003
, “
Unified Formulation to Predict the Tensile Curves of Steels With Different Microstructures
,”
Mater. Sci. Forum
,
426–432
(
5
), pp.
4525
4530
.
9.
Amirmaleki
,
M.
,
Samei
,
J.
,
Green
,
D. E.
,
van Riemsdijk
,
I.
, and
Stewart
,
L.
,
2016
, “
3D Micromechanical Modeling of Dual Phase Steels Using the Representative Volume Element Method
,”
Mech. Mater.
,
101
, pp.
27
39
.
10.
Vajragupta
,
N.
,
Uthaisangsuk
,
V.
,
Schmaling
,
B.
,
Münstermann
,
S.
,
Hartmaier
,
A.
, and
Bleck
,
W.
,
2012
, “
A Micromechanical Damage Simulation of Dual Phase Steels Using XFEM
,”
Comput. Mater. Sci.
,
54
(
1
), pp.
271
279
.
11.
Ramazani
,
A.
,
Schwedt
,
A.
,
Aretz
,
A.
,
Prahl
,
U.
, and
Bleck
,
W.
,
2013
, “
Characterization and Modelling of Failure Initiation in DP Steel
,”
Comput. Mater. Sci.
,
75
, pp.
35
44
.
12.
Pierman
,
A. P.
,
Bouaziz
,
O.
,
Pardoen
,
T.
,
Jacques
,
P. J.
, and
Brassart
,
L.
,
2014
, “
The Influence of Microstructure and Composition on the Plastic Behaviour of Dual-Phase Steels
,”
Acta Mater.
,
73
, pp.
298
311
.
13.
Lai
,
Q.
,
Bouaziz
,
O.
,
Gouné
,
M.
,
Brassart
,
L.
,
Verdier
,
M.
,
Parry
,
G.
,
Perlade
,
A.
,
Bréchet
,
Y.
, and
Pardoen
,
T.
,
2015
, “
Damage and Fracture of Dual-Phase Steels: Influence of Martensite Volume Fraction
,”
Mater. Sci. Eng. A
,
646
, pp.
322
331
.
14.
Marvi-Mashhadi
,
M.
,
Mazinani
,
M.
, and
Rezaee-Bazzaz
,
A.
,
2012
, “
FEM Modeling of the Flow Curves and Failure Modes of Dual Phase Steels With Different Martensite Volume Fractions Using Actual Microstructure as the Representative Volume
,”
Comput. Mater. Sci.
,
65
, pp.
197
202
.
15.
Zhang
,
X. C.
,
Zhong
,
F.
,
Shao
,
J. B.
,
Zhang
,
C. C.
,
Hou
,
N. X.
,
Yuan
,
G. J.
, and
Tu
,
S. T.
,
2016
, “
Failure Mechanism and Mode of Ti-6Al-4V Alloy Under Uniaxial Tensile Loading: Experiments and Micromechanical Modeling
,”
Mater. Sci. Eng. A
,
676
, pp.
536
545
.
16.
Sun
,
C. T.
, and
Vaidya
,
R. S.
,
1996
, “
Prediction of Composite Properties From a Representative Volume Element
,”
Compos. Sci. Technol.
,
56
(
2
), pp.
171
179
.
17.
Su
,
Y. L.
, and
Gurland
,
J.
,
1987
, “
Strain Partition, Uniform Elongation and Fracture Strain in Dual-Phase Steels
,”
Mater. Sci. Eng.
,
95
, pp.
151
165
.
18.
Tasan
,
C. C.
,
Hoefnagels
,
J. P. M.
,
Diehl
,
M.
,
Yan
,
D.
,
Roters
,
F.
, and
Raabe
,
D.
,
2014
, “
Strain Localization and Damage in Dual Phase Steels Investigated by Coupled In-Situ Deformation Experiments and Crystal Plasticity Simulations
,”
Int. J. Plast.
,
63
, pp.
198
210
.
19.
Ghadbeigi
,
H.
,
Pinna
,
C.
,
Celotto
,
S.
, and
Yates
,
J. R.
,
2010
, “
Local Plastic Strain Evolution in a High Strength Dual-Phase Steel
,”
Mater. Sci. Eng. A
,
527
(
18–19
), pp.
5026
5032
.
20.
Shen
,
H. P.
,
Lei
,
T. C.
, and
Liu
,
J. Z.
,
1986
, “
Microscopic Deformation Behaviour of Martensitic–Ferritic Dual-Phase Steels
,”
Mater. Sci. Technol. (UK)
,
2
(
1
), pp.
28
33
.
21.
Ramazani
,
A.
,
Mukherjee
,
K.
,
Quade
,
H.
,
Prahl
,
U.
, and
Bleck
,
W.
,
2013
, “
Correlation Between 2D and 3D Flow Curve Modelling of DP Steels Using a Microstructure-Based RVE Approach
,”
Mater. Sci. Eng. A
,
560
, pp.
129
139
.
22.
Gutierrez
,
I.
,
2005
, “
AME Modelling the Mechanical Behaviour of Steels With Mixed Microstructures
,”
Assoc. Metall. Eng. Serbia AMES
,
11
(
3
), pp.
201
214
.
23.
Davies
,
R. G.
,
1978
, “
The Mechanical Properties of Zero-Carbon Ferrite-Plus-Martensite Structures
,”
Metall. Trans. A
,
9
(
3
), pp.
451
455
.
24.
Fonstein
,
N.
,
2015
,
Advanced High Strength Sheet Steels: Physical Metallurgy, Design, Processing, and Properties
,
Springer International Publishing
.
25.
Davies
,
R. G.
,
1978
, “
Influence of Martensite Composition and Content on the Properties of Dual Phase Steels
,”
Metall. Trans. A
,
9
(
5
), pp.
671
679
.
26.
Paul
,
S. K.
,
2013
, “
Effect of Material Inhomogeneity on the Cyclic Plastic Deformation Behavior at the Microstructural Level: Micromechanics-Based Modeling of Dual-Phase Steel
,”
Model. Simul. Mater. Sci. Eng.
,
21
(
5
), p.
055001
.
27.
Böhm
,
H. J.
,
1998
,
ILSB Report / ILSB-Arbeitsbericht 206. “A Short Introduction to Basic Aspects of Continuum Micromechanics” (Updated: January 30, 2018)
.
28.
Kang
,
J.
,
Ososkov
,
Y.
,
Embury
,
J. D.
, and
Wilkinson
,
D. S.
,
2007
, “
Digital Image Correlation Studies for Microscopic Strain Distribution and Damage in Dual Phase Steels
,”
Scr. Mater.
,
56
(
11
), pp.
999
1002
.
29.
He
,
X. J.
,
Terao
,
N.
, and
Berghezan
,
A.
,
1984
, “
Influence of Martensite Morphology and Its Dispersion on Mechanical Properties and Fracture Mechanisms of Fe-Mn-C Dual Phase Steels
,”
Met. Sci.
,
18
(
7
), pp.
367
373
.
You do not currently have access to this content.