Abstract

This paper investigates the influence of stress state on the equivalent plastic fracture strain in 2024-T351 aluminum alloy. Eighteen unique stress states at failure—with triaxialities ranging from 0.388 (compressive) to −0.891 (tensile) and Lode parameters ranging from −0.978 to 1.000—are explored through mechanical experiments on 2024-T351 aluminum specimens with various geometries under multiple loading conditions. These include tension tests of plane stress (thin), plane strain (thick), and axisymmetric specimens, as well as pure shear and combined axial–torsional loading on thin-walled tubes. Using a hybrid numerical–experimental approach, the dependence of fracture strain on stress triaxiality and Lode parameter is quantified for each experiment. Fracture strains are measured using three-dimensional digital image correlation. Equivalent plastic fracture strain for 2024-T351 generally increases with stress triaxiality (moving toward a more compressive state). Fracture strain decreases modestly as the Lode parameter decreases from 1 to 0, although there is a significant increase in ductility as the Lode parameter decreases below −0.8. Compression–torsion tests extend the data’s stress-space coverage well into the compressive triaxiality region (up to 0.388) and to Lode parameters approaching −1. This experimental program provides the most extensive set of ductile fracture data from a single 12.7-mm-thick 2024-T351 aluminum plate in the literature. These data can be used to calibrate ductile fracture models used in finite element simulations of dynamic events such as bird strikes, automotive collisions, and debris containment.

References

1.
Emmerling
,
W.
,
Altobelli
,
D.
,
Carney
,
K.
, and
Pereira
,
M.
,
2014
, “
Development of a New Material Model in LS-DYNA—Part 1: FAA, NASA, and Industry Collaboration Background
.” FAA Report No. DOT/FAA/TC-13/25 P1.
2.
McClintock
,
F. A.
,
1968
, “
A Criterion for Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
363
371
.
3.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.
4.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth. Part I: Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
5.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup-Cone Fracture in a Round Tensile bar
,”
Acta Metall.
,
32
(
1
), pp.
157
169
.
6.
Pardoen
,
T.
, and
Hutchinson
,
J. W.
,
2000
, “
An Extended Model for Void Growth and Coalescence
,”
J. Mech. Phys. Solids
,
48
(
12
), pp.
2467
2512
.
7.
Benzerga
,
A. A.
,
Besson
,
J.
, and
Pineau
,
A.
,
2004
, “
Anisotropic Ductile Fracture. Part II: Theory
,”
Acta Mater.
,
52
(
15
), pp.
4639
4650
.
8.
Nahshon
,
K.
, and
Hutchinson
,
J.
,
2008
, “
Modification of the Gurson Model for Shear Failure
,”
Eur. J. Mech. A: Solids
,
27
(
1
), pp.
1
17
.
9.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
10.
Hancock
,
J. W.
, and
Mackenzie
,
A. C.
,
1976
, “
On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-axial Stress-States
,”
J. Mech. Phys. Solids
,
24
(
2–3
), pp.
147
169
.
11.
Mackenzie
,
A. C.
,
Hancock
,
J. W.
, and
Brown
,
D. K.
,
1977
, “
On the Influence of State of Stress on Ductile Failure Initiation in High Strength Steels
,”
Eng. Fract. Mech.
,
9
(
1
), pp.
167
188
.
12.
Hopperstad
,
O. S.
,
Børvik
,
T.
,
Langseth
,
M.
,
Labibes
,
K.
, and
Albertini
,
C.
,
2003
, “
On the Influence of Stress Triaxiality and Strain Rate on the Behaviour of a Structural Steel. Part I. Experiments
,”
Eur. J. Mech. A: Solids
,
22
(
1
), pp.
1
13
.
13.
Børvik
,
T.
,
Hopperstad
,
O. S.
, and
Berstad
,
T.
,
2003
, “
On the Influence of Stress Triaxiality and Strain Rate on the Behaviour of a Structural Steel. Part II. Numerical Study
,”
Eur. J. Mech. A: Solids
,
22
(
1
), pp.
15
32
.
14.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space
,”
Int. J. Mech. Sci.
,
46
(
1
), pp.
81
98
.
15.
Bao
,
Y.
,
2005
, “
Dependence of Ductile Crack Formation in Tensile Tests on Stress Triaxiality, Stress and Strain Ratios
,”
Eng. Fract. Mech.
,
72
(
4
), pp.
505
522
.
16.
Bonora
,
N.
,
Gentile
,
D.
,
Pirondi
,
A.
, and
Newaz
,
G.
,
2005
, “
Ductile Damage Evolution Under Triaxial State of Stress: Theory and Experiments
,”
Int. J. Plast.
,
21
(
5
), pp.
981
1007
.
17.
Mohr
,
D.
, and
Henn
,
S.
,
2007
, “
Calibration of Stress-Triaxiality Dependent Crack Formation Criteria: A New Hybrid Experimental-Numerical Method
,”
Exp. Mech.
,
47
(
6
), pp.
805
820
.
18.
Wierzbicki
,
T.
,
Bao
,
Y.
,
Lee
,
Y.-W.
, and
Bai
,
Y.
,
2005
, “
Calibration and Evaluation of Seven Fracture Models
,”
Int. J. Mech. Sci.
,
47
(
4–5
), pp.
719
743
.
19.
Barsoum
,
I.
, and
Faleskog
,
J.
,
2007
, “
Rupture Mechanisms in Combined Tension and Shear—Experiments
,”
Int. J. Solids Struct.
,
44
(
6
), pp.
1768
1786
.
20.
Xue
,
L.
,
2007
, “
Damage Accumulation and Fracture Initiation in Uncracked Ductile Solids Subject to Triaxial Loading
,”
Int. J. Solids Struct.
,
44
(
16
), pp.
5163
5181
.
21.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2008
, “
A New Model of Metal Plasticity and Fracture With Pressure and Lode Dependence
,”
Int. J. Plast.
,
24
(
6
), pp.
1071
1096
.
22.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2010
, “
Application of Extended Mohr-Coulomb Criterion to Ductile Fracture
,”
Int. J. Fract.
,
161
(
1
), pp.
1
20
.
23.
Stoughton
,
T. B.
, and
Yoon
,
J. W.
,
2011
, “
A New Approach for Failure Criterion for Sheet Metals
,”
Int. J. Plast.
,
27
(
3
), pp.
440
459
.
24.
Khan
,
A. S.
, and
Liu
,
H.
,
2012
, “
A New Approach for Ductile Fracture Prediction on Al 2024-T351 Alloy
,”
Int. J. Plast.
,
35
, pp.
1
12
.
25.
Danas
,
K.
, and
Ponte Castañeda
,
P.
,
2012
, “
Influence of the Lode Parameter and the Stress Triaxiality on the Failure of Elastic-Plastic Porous Materials
,”
Int. J. Solids Struct.
,
49
(
11–12
), pp.
1325
1342
.
26.
Malcher
,
L.
, and
Mamiya
,
E. N.
,
2014
, “
An Improved Damage Evolution Law Based on Continuum Damage Mechanics and Its Dependence on Both Stress Triaxiality and the Third Invariant
,”
Int. J. Plast.
,
56
, pp.
232
261
.
27.
Mohr
,
D.
, and
Marcadet
,
S. J.
,
2015
, “
Micromechanically-Motivated Phenomenological Hosford-Coulomb Model for Predicting Ductile Fracture Initiation at Low Stress Triaxialities
,”
Int. J. Solids Struct.
,
67–68
, pp.
40
55
.
28.
Beese
,
A. M.
,
Luo
,
M.
,
Li
,
Y.
,
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2010
, “
Partially Coupled Anisotropic Fracture Model for Aluminum Sheets
,”
Eng. Fract. Mech.
,
77
(
7
), pp.
1128
1152
.
29.
Haltom
,
S. S.
,
Kyriakides
,
S.
, and
Ravi-Chandar
,
K.
,
2013
, “
Ductile Failure Under Combined Shear and Tension
,”
Int. J. Solids Struct.
,
50
(
10
), pp.
1507
1522
.
30.
Faleskog
,
J.
, and
Barsoum
,
I.
,
2013
, “
Tension-Torsion Fracture Experiments—Part I: Experiments and a Procedure to Evaluate the Equivalent Plastic Strain
,”
Int. J. Solids Struct.
,
50
(
25–26
), pp.
4241
4257
.
31.
Ghahremaninezhad
,
A.
, and
Ravi-Chandar
,
K.
,
2013
, “
Ductile Behavior in Polycrystalline Aluminum Alloy Al 6061-T6 Under Shear Dominant Loading
,”
Int. J. Fract.
,
180
(
1
), pp.
23
39
.
32.
Papasidero
,
J.
,
Doquet
,
V.
, and
Mohr
,
D.
,
2015
, “
Ductile Fracture of Aluminum 2014-T351 Under Proportional and Non-proportional Multi-Axial Loading: Bao-Wierzbicki Results Revisited
,”
Int. J. Solids Struct.
,
69–70
, pp.
459
474
.
33.
Scales
,
M.
,
Tardif
,
N.
, and
Kyriakides
,
S.
,
2016
, “
Ductile Failure of Aluminum Alloy Tubes Under Combined Torsion and Tension
,”
Int. J. Solids Struct.
,
97–98
, pp.
116
128
.
34.
Scales
,
M.
,
Chen
,
K.
, and
Kyriakides
,
S.
,
2019
, “
Material Response, Localization, and Failure of an Aluminum Alloy Under Combined Shear and Tension: Part I Experiments
,”
Int. J. Plast.
,
120
, pp.
340
360
.
35.
Lou
,
Y.
,
Yoon
,
J. W.
, and
Huh
,
H.
,
2014
, “
Modeling of Shear Ductile Fracture Considering a Changeable Cut-Off Value for Stress Triaxiality
,”
Int. J. Plast.
,
54
, pp.
56
80
.
36.
Anderson
,
K.
,
Weritz
,
J.
, and
Kaufman
,
J.G.
, eds.,
2019
, “Properties and Selection of Aluminum Alloys,”
ASM Handbook
, Vol.
2B
,
ASM International
,
Materials Park, OH
.
37.
Seidt
,
J. D.
, and
Gilat
,
A.
,
2013
, “
Plastic Deformation of 2024-T351 Aluminum Plate Over a Wide Range of Loading Conditions
,”
Int. J. Solids Struct.
,
50
(
10
), pp.
1781
1790
.
38.
Jones
,
E. M. C.
, and
Iadicola
,
M. A.
, eds.,
2018
,
A Good Practices Guide for Digital Image Correlation
,
International Digital Image Correlation Society (iDICs)
, idics.orgidics.org
39.
Park
,
C. K.
,
Carney
,
K.
,
Du Bois
,
P.
,
Cordasco
,
D.
, and
Kan
,
C. D.
Aluminum 2024-T351 Input Parameters for MAT_224 in LS-DYNA
.” FAA Report No. DOT/FAA/TC-19/41 P1, 2020.
40.
Spulak
,
N.
,
Lowe
,
R. L.
,
Seidt
,
J. D.
,
Gilat
,
A.
,
Park
,
C. K.
, and
Carney
,
K. S.
,
2020
, “
Ductile Fracture Under In-Plane Biaxial Tension and Out-of-Plane Compression
,”
Int. J. Solids Struct.
,
202
, pp.
234
242
.
You do not currently have access to this content.