Abstract

Polymer coatings are widely used in industrial applications. The mechanical properties of these polymer coatings are known to vary with temperature and deformation rate. The characterization of the dynamic mechanical properties of these coatings at high temperatures via traditional uniaxial testing is challenging often due to their brittleness and small size. In this paper, the mechanical properties of polymer coatings are reported with emphasis on their dynamic mechanical properties at temperatures up to 280 °C characterized by a dynamic nanoindentation technique with a sharp indenter tip. Nanoindentation was used to characterize the mechanical response with emphasis on dynamic mechanical properties of polymer coatings enclosed in a high-temperature stage. To verify the method, the viscoelastic properties of a reference polyethylene terephthalate polyester film were also characterized by uniaxial cyclic tensile testing which exhibited an excellent agreement with the proposed technique. The proposed nanoindentation method can be applied to other polymer coatings and thin films that are used in applications at high temperatures.

References

1.
Choi
,
G. M.
,
Jin
,
J.
,
Shin
,
D.
,
Kim
,
Y. H.
,
Ko
,
J. H.
,
Im
,
H. G.
,
Jang
,
J.
,
Jang
,
D.
, and
Bae
,
B. S.
,
2017
, “
Flexible Hard Coating: Glass-Like Wear Resistant, Yet Plastic-Like Compliant, Transparent Protective Coating for Foldable Displays
,”
Adv. Mater.
,
29
(
19
), p.
1700205
.
2.
Kumar
,
S. K.
,
Benicewicz
,
B. C.
,
Vaia
,
R. A.
, and
Winey
,
K. I.
,
2017
, “
50th Anniversary Perspective: Are Polymer Nanocomposites Practical for Applications?
,”
Macromolecules
,
50
(
3
), pp.
714
731
.
3.
Ehlert
,
S.
,
Stegelmeier
,
C.
,
Pirner
,
D.
, and
Forster
,
S.
,
2015
, “
A General Route to Optically Transparent Highly Filled Polymer Nanocomposites
,”
Macromolecules
,
48
(
15
), pp.
5323
5327
.
4.
Kowalski
,
D.
,
Ueda
,
M.
, and
Ohtsuka
,
T.
,
2010
, “
Self-Healing Ion-Permselective Conducting Polymer Coating
,”
J. Mater. Chem.
,
20
(
36
), pp.
7630
7633
.
5.
Kumar
,
R.
,
Molin
,
D.
,
Young
,
L.
, and
Ke
,
F.
,
2004
, “
New High Temperature Polymer Thin Coating for Power Electronics
,”
Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004 (APEC’04)
,
Anaheim, CA
,
Feb. 22–26
, IEEE, pp.
1247
1249
.
6.
Wuu
,
D.-S.
,
Chen
,
T.-N.
,
Lay
,
E.
,
Liu
,
C.-H.
,
Chang
,
C.-H.
,
Wei
,
H.-F.
,
Jiang
,
L.-Y.
,
Lee
,
H.-U.
, and
Chang
,
Y.-Y.
,
2009
, “
Transparent Barrier Coatings on High Temperature Resisting Polymer Substrates for Flexible Electronic Applications
,”
J. Electrochem. Soc.
,
157
(
2
), p.
C47
.
7.
Hergenrother
,
P. M.
,
2003
, “
The Use, Design, Synthesis, and Properties of High Performance/High Temperature Polymers: An Overview
,”
High Perform. Polym.
,
15
(
1
), pp.
3
45
.
8.
Zoveidavianpoor
,
M.
, and
Gharibi
,
A.
,
2015
, “
Application of Polymers for Coating of Proppant in Hydraulic Fracturing of Subterraneous Formations: A Comprehensive Review
,”
J. Nat. Gas Sci. Eng.
,
24
, pp.
197
209
.
9.
Matsuda
,
Y.
,
Rathore
,
J.
,
Interrante
,
L.
,
Dauskardt
,
R.
, and
Dubois
,
G.
,
2012
, “
Moisture-Insensitive Polycarbosilane Films With Superior Mechanical Properties
,”
ACS Appl. Mater. Interfaces
,
4
(
5
), pp.
2659
2663
.
10.
Matsuda
,
Y.
,
Ryu
,
I.
,
King
,
S. W.
,
Bielefeld
,
J.
, and
Dauskardt
,
R. H.
,
2014
, “
Toughening Thin-Film Structures With Ceramic-Like Amorphous Silicon Carbide Films
,”
Small
,
10
(
2
), pp.
253
257
.
11.
Xiang
,
Y.
,
Chen
,
X.
, and
Vlassak
,
J. J.
,
2005
, “
Plane-Strain Bulge Test for Thin Films
,”
J. Mater. Res.
,
20
(
9
), pp.
2360
2370
.
12.
Yu
,
D. Y.
, and
Spaepen
,
F.
,
2004
, “
The Yield Strength of Thin Copper Films on Kapton
,”
J. Appl. Phys.
,
95
(
6
), pp.
2991
2997
.
13.
Lee
,
H.-J.
,
Zhang
,
P.
, and
Bravman
,
J. C.
,
2003
, “
Tensile Failure by Grain Thinning in Micromachined Aluminum Thin Films
,”
J. Appl. Phys.
,
93
(
3
), pp.
1443
1451
.
14.
Woehrmann
,
M.
,
Keller
,
A.
,
Fritzsch
,
T.
,
Schiffer
,
M.
,
Gollhardt
,
A.
,
Walter
,
H.
,
Schneider-Ramelow
,
M.
, and
Lang
,
K.-D.
,
2020
, “
Reliability Investigation of Ultra Fine Line, Multi-Layer Copper Routing for Fan-Out Packaging Using a Newly Designed Micro Tensile Test Method
,”
2020 IEEE 70th Electronic Components and Technology Conference (ECTC)
,
Orlando, FL
,
June 3–30
, IEEE, pp.
893
899
.
15.
Si
,
L.
,
Massa
,
M. V.
,
Dalnoki-Veress
,
K.
,
Brown
,
H. R.
, and
Jones
,
R. A. L.
,
2005
, “
Chain Entanglement in Thin Freestanding Polymer Films
,”
Phys. Rev. Lett.
,
94
(
12
), p.
127801
.
16.
Vlassak
,
J.
, and
Nix
,
W.
,
1992
, “
A New Bulge Test Technique for the Determination of Young’s Modulus and Poisson’s Ratio of Thin Films
,”
J. Mater. Res.
,
7
(
12
), pp.
3242
3249
.
17.
Minor
,
A. M.
,
Asif
,
S. S.
,
Shan
,
Z.
,
Stach
,
E. A.
,
Cyrankowski
,
E.
,
Wyrobek
,
T. J.
, and
Warren
,
O. L.
,
2006
, “
A New View of the Onset of Plasticity During the Nanoindentation of Aluminium
,”
Nat. Mater.
,
5
(
9
), pp.
697
702
.
18.
Greer
,
J. R.
, and
De Hosson
,
J. T. M.
,
2011
, “
Plasticity in Small-Sized Metallic Systems: Intrinsic Versus Extrinsic Size Effect
,”
Prog. Mater. Sci.
,
56
(
6
), pp.
654
724
.
19.
Greer
,
J. R.
,
Oliver
,
W. C.
, and
Nix
,
W. D.
,
2005
, “
Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients
,”
Acta Mater.
,
53
(
6
), pp.
1821
1830
.
20.
Uchic
,
M. D.
,
Shade
,
P. A.
, and
Dimiduk
,
D. M.
,
2009
, “
Plasticity of Micrometer-Scale Single Crystals in Compression
,”
Annu. Rev. Mater. Res.
,
39
(
1
), pp.
361
386
.
21.
Lan
,
P.
,
Zhang
,
Y.
,
Dai
,
W.
, and
Polycarpou
,
A. A.
,
2018
, “
A Phenomenological Elevated Temperature Friction Model for Viscoelastic Polymer Coatings Based on Nanoindentation
,”
Tribol. Int.
,
119
, pp.
299
307
.
22.
Wang
,
X.
,
Zhao
,
L.
,
Deng
,
Y.
,
Li
,
Y.
, and
Wang
,
S.
,
2018
, “
Effect of the Penetration of Isocyanates (pMDI) on the Nanomechanics of Wood Cell Wall Evaluated by AFM-IR and Nanoindentation (NI)
,”
Holzforschung
,
72
(
4
), pp.
301
309
.
23.
Voyiadjis
,
G. Z.
,
Samadi-Dooki
,
A.
, and
Malekmotiei
,
L.
,
2017
, “
Nanoindentation of High Performance Semicrystalline Polymers: A Case Study on PEEK
,”
Polym. Test.
,
61
, pp.
57
64
.
24.
Patel
,
N. G.
,
Sreeram
,
A.
,
Venkatanarayanan
,
R. I.
,
Krishnan
,
S.
, and
Yuya
,
P. A.
,
2015
, “
Elevated Temperature Nanoindentation Characterization of Poly (Para-Phenylene Vinylene) Conjugated Polymer Films
,”
Polym. Test.
,
41
, pp.
17
25
.
25.
Juliano
,
T.
,
VanLandingham
,
M.
,
Tweedie
,
C.
, and
Van Vliet
,
K.
,
2007
, “
Multiscale Creep Compliance of Epoxy Networks at Elevated Temperatures
,”
Exp. Mech.
,
47
(
1
), pp.
99
105
.
26.
Lu
,
H.
,
Wang
,
B.
,
Ma
,
J.
,
Huang
,
G.
, and
Viswanathan
,
H.
,
2003
, “
Measurement of Creep Compliance of Solid Polymers by Nanoindentation
,”
Mech. Time-Depend. Mater.
,
7
(
3
), pp.
189
207
.
27.
Huang
,
G.
, and
Lu
,
H.
,
2006
, “
Measurement of Young’s Relaxation Modulus Using Nanoindentation
,”
Mech. Time-Depend. Mater.
,
10
(
3
), pp.
229
243
.
28.
Herbert
,
E.
,
Oliver
,
W.
, and
Pharr
,
G.
,
2008
, “
Nanoindentation and the Dynamic Characterization of Viscoelastic Solids
,”
J. Phys. D: Appl. Phys.
,
41
(
7
), p.
074021
.
29.
Asif
,
S. S.
, and
Pethica
,
J.
,
1997
, “
Nano-Scale Viscoelastic Properties of Polymer Materials
,”
MRS Online Proc. Lib.
,
505
(
103
).
30.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
31.
Tweedie
,
C. A.
, and
Van Vliet
,
K. J.
,
2006
, “
Contact Creep Compliance of Viscoelastic Materials Via Nanoindentation
,”
J. Mater. Res.
,
21
(
6
), pp.
1576
1589
.
32.
Bruker
, “NanoDMA III for Polymers: Primer and Applications.” www.bruker.com/nanomechanical-testing
33.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
34.
Bruker
, “xSol High-Temperature Stage.” www.bruker.com/nanomechanical-testing
35.
Liang
,
Y. L.
, and
Pearson
,
R. A.
,
2009
, “
Toughening Mechanisms in Epoxy-Silica Nanocomposites (ESNs)
,”
Polymer
,
50
(
20
), pp.
4895
4905
.
36.
Bagheri
,
R.
,
Marouf
,
B.
, and
Pearson
,
R.
,
2009
, “
Rubber-Toughened Epoxies: A Critical Review
,”
J. Macromol. Sci. Part C: Polym. Rev.
,
49
(
3
), pp.
201
225
.
37.
Bucknall
,
C.
, and
Paul
,
D.
,
2009
, “
Notched Impact Behavior of Polymer Blends: Part 1: New Model for Particle Size Dependence
,”
Polymer
,
50
(
23
), pp.
5539
5548
.
38.
Kang
,
B. U.
,
Jho
,
J. Y.
,
Kim
,
J.
,
Lee
,
S. S.
,
Park
,
M.
,
Lim
,
S.
, and
Choe
,
C. R.
,
2001
, “
Effect of Molecular Weight Between Crosslinks on the Fracture Behavior of Rubber-Toughened Epoxy Adhesives
,”
J. Appl. Polym. Sci.
,
79
(
1
), pp.
38
48
.
39.
Giannakopoulos
,
G.
,
Masania
,
K.
, and
Taylor
,
A.
,
2011
, “
Toughening of Epoxy Using Core–Shell Particles
,”
J. Mater. Sci.
,
46
(
2
), pp.
327
338
.
40.
Labonte
,
D.
,
Lenz
,
A.-K.
, and
Oyen
,
M. L.
,
2017
, “
On the Relationship Between Indentation Hardness and Modulus, and the Damage Resistance of Biological Materials
,”
Acta Biomater.
,
57
, pp.
373
383
.
41.
Hutchings
,
I. M.
,
1992
,
Tribology: Friction and Wear of Engineering Materials
,
CRC Press
,
Boca Raton, FL
.
42.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
2004
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
,
19
(
1
), pp.
3
20
.
43.
Cheng
,
Y.-T.
, and
Cheng
,
C.-M.
,
1998
, “
Scaling Approach to Conical Indentation in Elastic-Plastic Solids With Work Hardening
,”
J. Appl. Phys.
,
84
(
3
), pp.
1284
1291
.
44.
Cheng
,
Y.-T.
, and
Cheng (Zheng Zhemin)
,
C.-M.
,
1999
, “
Scaling Relationships in Conical Indentation of Elastic-Perfectly Plastic Solids
,”
Int. J. Solids Struct.
,
36
(
8
), pp.
1231
1243
.
45.
Cheng
,
Y.-T.
, and
Cheng
,
C.-M.
,
1998
, “
Relationships Between Hardness, Elastic Modulus, and the Work of Indentation
,”
Appl. Phys. Lett.
,
73
(
5
), pp.
614
616
.
You do not currently have access to this content.