Abstract

A number of new trends in material mechanics and engineering science can be traced back to the PhD work of Hussein Zbib at Michigan Technological University (MTU). In particular, the topics of shear bands and plastic instabilities found a new basis and direction, prompting distinguished researchers—whom he begun interacting with during his doctoral and post-doctoral years (see Appendix)—to turn their attention to gradient plasticity and make their own monumental contributions in this field. This article first provides a brief account of the initial attempts, I had the joy to share with him, on gradient mechanics theory and its implications to the problems of strain localization and size effects. It then continues with a brief exposition of topics that his “scientific family” has taken up in parallel with him or later on. Finally, it concludes with a sketch of ideas I discussed with him during his post-doctoral period at MTU and his tenure period as a faculty member and Chairman at Washington State University (WSU) which, unfortunately, he did not have the time to elaborate upon.

References

1.
Aifantis
,
E. C.
,
Walgraef
,
D.
, and
Zbib
,
H., eds.
,
1998
,
Material Instabilities
, Vol.
23, Nos. 2–3
,
Elsevier Applied Science, London
, pp.
97
305
.
2.
Zbib
,
H. M.
, and
Aifantis
,
E. C.
,
1988
, “
On the Localization and Postlocalization Behavior of Plastic Deformation—I, II and III
,”
Res. Mech.
,
23
(
2–3
), pp.
261
277
, 279–292, and 293–305.
3.
Zbib
,
H. M.
,
1987
, “
Topics in Large Deformation Material Rotation, Anisotropy and Localization
,”
Ph.D. thesis
,
Michigan Technological University
,
Houghton, MI
.
4.
Aifantis
,
E. C.
,
1984
, “
On the Microstructural Origin of Certain Inelastic Models
,”
ASME J. Eng. Mater. Technol.
,
106
(
4
), pp.
326
330
.
5.
Aifantis
,
E. C.
,
1987
, “
The Physics of Plastic Deformation
,”
Int. J. Plast.
,
3
(
3
), pp.
211
247
.
6.
Aifantis
,
E. C.
, and
Serrin
,
J. B.
,
1983
, “
The Mechanical Theory of Fluid Interfaces and Maxwell’s Rule
,”
J. Colloid Interface Sci.
,
96
(
2
), pp.
517
529
.
7.
Aifantis
,
E. C.
, and
Serrin
,
J. B.
,
1983
, “
Equilibrium Solutions in the Mechanical Theory of Fluid Microstructures
,”
J. Colloid Interface Sci.
,
96
(
2
), pp.
530
547
.
8.
Liénard
,
A.
,
1928
, “
Etude des Oscillations Entretenues
,”
Rev. générale l'électricité
,
23
(
21
), pp.
901
912
and 946–954. https://en.wikipedia.org/wiki/Li%C3%A9nard_equation
9.
Drazin
,
P. G.
,
1992
,
Nonlinear Systems
,
P. G.
Drazin
, ed.,
Cambridge University Press
,
Cambridge
, pp.
170
213
.
10.
Sluys
,
L. J.
, and
de Borst
,
R.
,
1994
, “
Dispersive Properties of Gradient and Rate-Dependent Media
,”
Mech. Mater.
,
183
(
2
), pp.
131
149
.
11.
Tomita
,
Y.
,
1994
, “
Simulations of Plastic Instabilities in Solid Mechanics
,”
ASME Appl. Mech. Rev.
,
47
(
6
), pp.
171
205
.
12.
Carpinteri
,
A., ed.
,
1995
,
Size-Scale Effects in the Failure Mechanisms of Materials and Structures, Proc. IUTAM Symp.
,
Chapman and Hall
,
New York
.
13.
de Borst
,
R.
, and
van der Giessen
,
E., eds.
,
1998
,
Material Instabilities in Solids, Proc. IUTAM Symp.
,
Wiley
,
Chichester
.
14.
Muhlhaus
,
H. B., ed.
,
1995
,
Continuum Models for Materials With Microstructure
,
Wiley
,
New York
.
15.
Aifantis
,
E. C.
,
1992
, “
On the Role of Gradients in the Localization of Deformation and Fracture
,”
Int. J. Eng. Sci.
,
30
(
10
), pp.
1279
1299
.
16.
Triantafyllidis
,
N.
, and
Aifantis
,
E. C.
,
1986
, “
A Gradient Approach to Localization of Deformation—I. Hyperelastic Materials
,”
J. Elast.
,
16
(
3
), pp.
225
238
.
17.
Triantafyllidis
,
N.
, and
Bardenhagen
,
S.
,
1993
, “
On Higher-Order Gradient Continuum Theories in 1-D. Nonlinear Elasticity. Derivation From and Comparison to the Corresponding Discrete Models
,”
J. Elast.
,
33
(
3
), pp.
259
293
.
18.
Bardenhagen
,
S.
, and
Triantafyllidis
,
N.
,
1994
, “
Derivation of Higher-Order Gradient Continuum Theories in 2,3-D. Nonlinear Elasticity From Periodic Lattice Models
,”
J. Mech. Phys. Solids
,
42
(
1
), pp.
111
139
.
19.
Altan
,
S. B.
, and
Aifantis
,
E. C.
,
1992
, “
On the Structure of the Mode III Crack-Tip in Gradient Elasticity
,”
Scr. Metall. Mater.
,
26
(
2
), pp.
319
324
.
20.
Ru
,
C. Q.
, and
Aifantis
,
E. C.
,
1993
, “
A Simple Approach to Solve Boundary Value Problems in Gradient Elasticity
,”
Acta Mech.
,
101
, pp.
59
68
.
21.
Aifantis
,
E. C.
,
2016
, “
Internal Length Gradient (ILG) Material Mechanics Across Scales & Disciplines
,”
Adv. Appl. Mech.
,
49
, pp.
1
110
.
22.
Mindlin
,
R. D.
,
1964
, “
Micro-Structure in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
16
(
1
), pp.
51
78
.
23.
dell’Isola
,
F.
,
Sciarra
,
G.
, and
Vidoli
,
S.
,
2009
, “
Generalized Hooke’s Law for Isotropic Second Gradient Materials
,”
Proc. R. Soc. A
,
465
(
2107
), pp.
2177
2196
.
24.
Auffray
,
N.
,
dell’Isola
,
F.
,
Eremeyev
,
V. A.
,
Madeo
,
A.
, and
Rosi
,
G.
,
2015
, “
Analytical Continuum Mechanics à la Hamilton-Piola: Least Action Principle for Second Gradient Continua and Capillary Fluids
,”
Math. Mech. Solids
,
20
(
4
), pp.
375
417
.
25.
Bertram
,
A.
,
2016
, “
Finite Gradient Elasticity and Plasticity: A Constitutive Thermodynamic Framework
,”
Continuum Mech. Thermodyn.
,
28
(
3
), pp.
869
883
.
26.
Bertram
,
A.
,
2017
,
Compendium on Gradient Materials
, 3rd ed.,
TU Berlin
,
Magdeburg
.
27.
Eringen
,
A. C.
,
1985
, “Nonlocal Continuum Theory for Dislocations and Fracture,”
The Mechanics of Dislocations
,
E. C.
Aifantis
, and
J. P.
Hirth
, eds.,
ASM
,
Metals Park
, pp.
101
110
.
28.
Eringen
,
A. C.
,
2001
,
Nonlocal Continuum Field Theories
,
Springer
,
New York
.
29.
Aifantis
,
E. C.
,
2011
, “
On the Gradient Approach—Relation to Eringen’s Nonlocal Theory
,”
Int. J. Eng. Sci.
,
49
(
12
), pp.
1367
1377
.
30.
Coleman
,
B. D.
, and
Gurtin
,
M. E.
,
1967
, “
Thermodynamics With Internal State Variables
,”
J. Chem. Phys.
,
47
(
2
), pp.
597
613
.
31.
Valanis
,
K. C.
,
1967
, “
The Viscoelastic Potential and Its Thermodynamic Foundations
,”
J. Math. Phys.
,
47
(
1–4
), pp.
262
275
.
32.
Valanis
,
K. C.
,
1996
, “
A Gradient Theory of Internal Variables
,”
Acta. Mech.
,
116
(
1–4
), pp.
1
14
.
33.
Valanis
,
K. C.
,
1998
, “
A Gradient Thermodynamic Theory of Self-Organization
,”
Acta Mech.
,
127
(
1–4
), pp.
1
23
.
34.
Valanis
,
K. C.
,
1998
, “
Diffusion Potential and Well-Posedness in Non-Associative Plasticity
,”
Int. J. Solids Struct.
,
35
(
36
), pp.
5173
5188
.
35.
Valanis
,
K. C.
,
2000
, “
Gradient Field Theory of Material Instabilities
,”
Arch. Mech.
,
52
(
4–5
), pp.
817
838
.
36.
Aifantis
,
E. C.
, and
Davison
,
L., eds.
,
1984
, “
Special Issue: Media With Microstructures and Wave Propagation
,”
Int. J. Eng. Sci.
,
22
(
8–10
), pp.
959
1224
.
37.
Aifantis
,
E. C.
,
1984
, “
Remarks on Media With Microstructure
,”
Int. J. Eng. Sci.
,
22
(
8–10
), pp.
961
968
.
38.
Aifantis
,
E. C.
,
1994
, “
Gradient Effects at Macro, Micro, and Nano Scales
,”
J. Mech. Behav. Mater.
,
5
(
3
), pp.
355
375
.
39.
Bammann
,
D.
, and
Aifantis
,
E. C.
,
1989
, “
A Damage Model for Ductile Metals
,”
Nucl. Eng. Des.
,
116
(
3
), pp.
355
362
.
40.
Lesar
,
R.
,
Rickman
,
J. M.
,
Clarke
,
D. R.
,
Ruhle
,
R.
, and
Bravman
,
J. C.
, eds.,
2002
,
Annual Review of Materials Research
,
32
, See, for Example, pp.
113
140
and 163–194.
41.
van der Waals
,
J. D.
,
1873
, “
Over de Continuited van den Gas-en Vloeistoftoestand
,”
Ph.D. thesis
,
University of Leiden
,
Leiden
.
42.
van der Waals
,
J. D.
,
1895
, “
Thèorie Thermodynamique de la Capillarité, Dans L’hypothèse D’une Variation Continue de Densité
,”
Arch. Neerl. Sci. Exactes Nat.
,
28
, pp.
121
209
.
43.
Rowlinson
,
J. S.
,
1979
, “
Translation of J. D. van der Waals’ “The Thermodynamic Theory of Capillarity Under the Hypothesis of a Continuous Variation of Density”
,”
J. Stat. Phys.
,
20
(
2
), pp.
197
200
.
44.
Ginzburg
,
V. L.
, and
Landau
,
L. D.
,
1950
, “
On the Theory of Superconductivity
,”
Sov. Phys. JETP
,
20
, pp.
1064
1082
. https://en.wikipedia.org/wiki/Ginzburg%E2%80%93Landau_theory
45.
Ginzburg
,
V. L.
, and
Landau
,
L. D.
,
2009
, “On the Theory of Superconductivity (Chapter 4),”
On Superconductivity and Superfluidity
,
V. L.
Ginzburg
, ed.,
Springer
,
Berlin/Heidelberg
, pp.
113
137
.
46.
Ter Haar
,
D.
,
1965
,
Collected Papers of L.D. Landau
,
Pergamon
,
London
.
47.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
,
1958
, “
Free Energy of a Nonuniform System. I. Interfacial Free Energy
,”
J. Chem. Phys.
,
28
(
2
), pp.
258
267
.
48.
Cahn
,
J. W.
,
1959
, “
Free Energy of a Nonuniform System. II. Thermodynamic Basis
,”
J. Chem. Phys.
,
30
(
5
), pp.
1121
1124
.
49.
Webb
,
T.
,
1993
, “
On the Theory of Stick-Slip Fracture
,”
Ph.D. thesis
,
Michigan Technological University
,
Houghton, MI
.
50.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
.
51.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “Strain Gradient Plasticity,”
Advances in Applied Mechanics
,
J. W.
Hutchinson
, and
T. W.
Wu
, eds.,
Academic Press
,
New York
, pp.
295
361
.
52.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
2001
, “
A Reformulation of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
49
(
10
), pp.
2245
2271
.
53.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity—I
,”
J. Mech. Phys. Solids
,
47
(
6
), pp.
1239
1263
.
54.
Huang
,
Y.
,
Gao
,
H.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
2000
, “
Mechanism-Based Strain Gradient Plasticity—II
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
99
128
.
55.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2009
, “
Thermodynamics Applied to Gradient Theories Involving the Accumulated Plastic Strain: The Theories of Aifantis and Fleck and Hutchinson and Their Generalization
,”
J. Mech. Phys. Solids
,
57
(
3
), pp.
405
421
.
56.
Gurtin
,
M. E.
,
Fried
,
E.
, and
Anand
,
L.
,
2012
,
The Mechanics and Thermodynamics of Continua
,
Cambridge University Press
,
New York
.
57.
Tarasov
,
V. E.
, and
Aifantis
,
E. C.
,
2019
, “
On Fractional and Fractal Formulations of Gradient Linear and Nonlinear Elasticity
,”
Acta Mech.
,
230
(
6
), pp.
2043
2070
.
58.
Aifantis
,
E. C.
,
2019
, “Fractional Generalizations of Gradient Mechanics,”
Applications in Physics, Part A
, Vol. 4,
V. E.
Tarasov
, ed.,
De Gruyter
,
Berlin
, pp.
241
262
.
59.
Tsagrakis
,
I.
, and
Aifantis
,
E. C.
,
2002
, “
Recent Developments in Gradient Plasticity. Part I: Formulation and Size Effects
,”
ASME J. Eng. Mater. Technol.
,
124
(
3
), pp.
352
357
. [For an initial treatment and detailed review of related gradient theories up to that date the reader may consult: Aifantis, E. C., 1994, “Spatio-Temporal Instabilities in Deformation and Fracture,” Comput. Mater. Model., AD-Vol. 42/PVP-Vol. 294, A. K. Noor and A. Needleman, eds., ASME, New York, pp. 199–222.]
60.
Zhu
,
H. T.
, and
Zbib
,
H. M.
,
1995
, “
On the Role of Strain Gradients in Adiabatic Shear Banding
,”
Acta Mech.
,
111
(
1–2
), pp.
111
124
.
61.
Aifantis
,
E. C.
,
1999
, “
Gradient Deformation Models at Nano, Micro, and Macro Scales
,”
ASME J. Eng. Mater. Technol.
,
121
(
2
), pp.
189
202
.
62.
Tsagrakis
,
I.
, and
Aifantis
,
E. C.
, “
Shear Banding Instabilities in Bulk Metallic Glasses at Low Strain Rates: Gradient and Length Scale Effects
,”
Rev. Adv. Mater. Sci.
,
48
, pp.
156
169
.
63.
Zbib
,
H. M.
, and
Aifantis
,
E. C.
,
1988
, “
On the Concept of Relative and Plastic Spins and Its Implications to Large Deformation Theories, Part I: Hypoelasticity and Vertex-Type Plasticity
,”
Acta Mech.
,
75
(
1–4
), pp.
15
33
.
64.
Zbib
,
H. M.
, and
Aifantis
,
E. C.
,
1988
, “
On the Concept of Relative and Plastic Spins and Its Implications to Large Deformation Theories, Part II: Anisotropic Hardening Plasticity
,”
Acta Mech.
,
75
(
1–4
), pp.
35
56
.
65.
Webb
,
T. W.
, and
Alfantis
,
E. C.
,
1995
, “
Oscillatory Fracture in Polymeric Materials
,”
Int. J. Solids Struct.
,
32
(
17–18
), pp.
2725
2743
.
66.
Webb
,
T. W.
, and
Aifantis
,
E. C.
,
1989
, “
Stick-Slip Peeling
,”
ASME Winter Annual Meeting
,
San Francisco, CA
, Paper No. 89-WA-EEP-7.
67.
Aifantis
,
K. E.
,
2005
, “
Gradient Plasticity With Interfacial Effects and Experimental Confirmation Through Nano-Indentation
,”
Ph.D. thesis
,
University of Groningen
,
Groningen
, The Netherlands.
68.
Aifantis
,
K. E.
, and
Willis
,
J. R.
,
2005
, “
The Role of Interfaces in Enhancing the Yield Strength of Composites and Polycrystals
,”
J. Mech. Phys. Solids
,
53
(
5
), pp.
1047
1070
.
69.
Aifantis
,
K. E.
,
Soer
,
W. A.
,
De Hosson
,
J. T. M.
, and
Willis
,
J. R.
,
2006
, “
Interfaces Within Strain Gradient Plasticity: Theory and Experiments
,”
Acta Mater.
,
54
(
19
), pp.
5077
5085
.
70.
Aifantis
,
K. E.
, and
Ngan
,
A. H. W.
,
2007
, “
Modeling Dislocation—Grain Boundary Interactions Through Gradient Plasticity and Nanoindentation
,”
Mater. Sci. Eng. A
,
459
(
1–2
), pp.
251
261
.
71.
Zhang
,
X.
, and
Aifantis
,
K. E.
,
2011
, “
Interpreting Strain Bursts and Size Effects in Micropillars Using Gradient Plasticity
,”
Mater. Sci. Eng. A
,
528
(
15
), pp.
5036
5043
.
72.
Aifantis
,
K. E.
,
Konstantinidis
,
A.
, and
Forest
,
S.
,
2012
, “
Modeling Strain Localization Bands in Metal Foams
,”
J. Comput. Theor. Nanosci.
,
7
(
2
), pp.
1
7
.
73.
Konstantinidis
,
A. A.
,
Aifantis
,
K. E.
, and
De Hosson
,
J. T. M.
,
2014
, “
Capturing the Stochastic Mechanical Behavior of Micro and Nanopillars
,”
Mater. Sci. Eng. A
,
597
, pp.
89
94
.
74.
Konstantinidis
,
A. A.
, and
Aifantis
,
K. E.
,
2019
, “
Capturing Slip Band Formation in Ni3Al Nanocubes During Compression
,”
Mater. Sci. Technol.
,
35
(
5
), pp.
571
576
.
75.
Zaiser
,
M.
, and
Hahner
,
P.
,
1996
, “
Random Aspects of Macroscopic Plastic Deformation
,”
Philos. Mag. Lett.
,
73
(
6
), pp.
369
375
.
76.
Zaiser
,
M.
, and
Aifantis
,
E. C.
,
2006
, “
Randomness and Slip Avalanches in Gradient Plasticity
,”
Int. J. Plast.
,
22
(
8
), pp.
1432
1455
.
77.
Zaiser
,
M.
, and
Seeger
,
A.
,
2002
, “Long-Range Internal Stresses, Dislocation Patterning and Work Hardening in Crystal Plasticity,”
Dislocations in Solids
,
F. R. N.
Nabarro
, and
M. S.
Duesbery
, eds.,
11
,
North-Holland
,
Amsterdam
, pp.
1
100
.
78.
Aifantis
,
E. C.
,
2021
, “Gradient Extension of Classical Material Models: From Nuclear & Condensed Matter Scales to Earth & Cosmological Scales,”
Size-Dependent Continuum Mechanics Approaches
,
E.
Ghavanloo
,
S. A.
Fazelzadeh
, and
F.
Marotti de Sciarra
, eds.,
Springer
,
Cham
, pp.
417
452
.
79.
Fischbach
,
E.
,
Sudarsky
,
D.
,
Szafer
,
A.
,
Talmadge
,
C.
, and
Aronson
,
S. H.
,
1986
, “
Reanalysis of the Eötös Experiment
,”
Phys. Rev. Lett.
,
56
(
1
), pp.
3
6
.
80.
Fischbach
,
E.
,
2015
, “
The Fifth Force: A Personal History
,”
Eur. Phys. J. H
,
40
(
4–5
), pp.
385
467
.
81.
Zbib
,
H. M.
,
Rhee
,
M.
, and
Hirth
,
J. P.
,
1998
, “
On Plastic Deformation and the Dynamics of 3D Dislocations
,”
Int. J. Mech. Sci.
,
40
(
2–3
), pp.
113
127
.
82.
Rhee
,
M.
,
Zbib
,
H. M.
,
Hirth
,
J. P.
,
Huang
,
H.
, and
de la Rubia
,
T.
,
1998
, “
Models for Long-/Short-Range Interactions and Cross Slip in 3D Dislocation Simulation of BCC Single Crystals
,”
Modell. Simul. Mater. Sci. Eng.
,
6
(
4
), pp.
467
492
.
83.
Walgraef
,
D.
, and
Aifantis
,
E. C.
,
1985
, “
Dislocation Patterning in Fatigued Metals as a Result of Dynamical Instabilities
,”
J. Appl. Phys.
,
58
(
2
), pp.
688
691
.
84.
Aifantis
,
E. C.
,
1986
, “
On the Dynamical Origin of Dislocation Patterns
,”
Mater. Sci. Eng.
,
81
, pp.
563
574
.
85.
Lepinoux
,
J.
, and
Kubin
,
L. P.
,
1987
, “
The Dynamic Organization of Dislocation Structures: A Simulation
,”
Scr. Metall.
,
21
(
6
), pp.
833
838
.
86.
Gulluoglu
,
A. N.
,
Srolovitz
,
D. J.
,
LeSar
,
R.
, and
Lomdahl
,
P. S.
,
1989
, “
Dislocation Distributions in Two Dimensions
,”
Scr. Metall.
,
23
(
8
), pp.
1347
1352
.
87.
Ghoniem
,
N. M.
, and
Amodeo
,
R. J.
,
1990
,
Patterns, Defects and Material Instabilities
,
D.
Walgraef
, and
N. M.
Ghoniem
, eds.,
Kluwer Academic Publishers
,
Dordrecht
, pp.
303
329
.
88.
Kubin
,
L. P.
,
Canova
,
G.
,
Condat
,
M.
,
Devincre
,
B.
,
Pontikis
,
V.
, and
Brechet
,
Y.
,
1992
, “
Dislocation Microstructures in Two Dimensions: I. Relaxed Structures, Modelling Simulation
,”
Mater. Sci. Eng.
,
1
, pp.
1
17
.
89.
Kubin
,
L. P.
,
1993
, “Dislocation Patterning,”
Materials Science and Technology
, Vol.
6
,
R. W.
Cahn
,
P.
Haasan
, and
E. J.
Kramer
, eds.,
Weinheim VCH
,
New York
, pp.
138
190
.
90.
Shizawa
,
K.
, and
Zbib
,
H. M.
,
1997
, “
A Thermodynamical Theory of Gradient Elastoplasticity With Dislocation Density Tensor. I: Fundamentals
,”
Int. J. Plast.
,
15
(
9
), pp.
899
938
.
91.
Shizawa
,
K.
,
Kikuchi
,
K.
, and
Zbib
,
H. M.
,
2001
, “
A Strain-Gradient Thermodynamic Theory of Plasticity Based on Dislocation Density in Incompatibility Tensors
,”
Mater. Sci. Eng. A
,
309–310
, pp.
416
419
.
92.
Zbib
,
H. M.
,
Hamid
,
M.
,
Lyu
,
H.
, and
Mastorakos
,
I.
,
2018
, “Multiscale Dislocation-Based Plasticity,”
Mesoscale Models
, Vol. 587,
S.
Mesarovic
,
S.
Forest
, and
H.
Zbib
, eds., CISM International Centre for Mechanical Sciences (Courses and Lectures),
Springer
,
Cham
, pp.
51
85
.
93.
Pontes
,
J.
,
Walgraef
,
D.
, and
Aifantis
,
E. C.
,
2006
, “
On Dislocation Patterning: Multiple Slip Effects in the Rate Equation Approach
,”
Int. J. Plast.
,
22
(
8
), pp.
1486
1505
.
94.
Hamid
,
M.
,
Lyu
,
H.
, and
Zbib
,
H.
,
2018
, “
A Dislocation-Based Stress–Strain Gradient Plasticity Model for Strength and Ductility in Materials With Gradient Microstructures
,”
Philos. Mag.
,
98
(
32
), pp.
2896
2916
.
95.
Steinmann
,
P.
,
Kergaßner
,
A.
,
Landkammer
,
P.
, and
Zbib
,
H. M.
,
2019
, “
A Novel Continuum Approach to Gradient Plasticity Based on the Complementing Concepts of Dislocation and Disequilibrium Densities
,”
J. Mech. Phys. Solids
,
132
, p.
103680
.
96.
Zhou
,
G.
,
Jeong
,
W.
,
Homer
,
E. R.
,
Fullwood
,
D. T.
,
Lee
,
M. G.
,
Kim
,
J. H.
,
Lim
,
H.
,
Zbib
,
H.
, and
Wagoner
,
R. H.
,
2020
, “
A Predictive Strain-Gradient Model With no Undetermined Constants or Length Scales
,”
J. Mech. Phys. Solids
,
145
, p.
104178
.
97.
Akarapu
,
S.
, and
Zbib
,
H. M.
,
2006
, “
Numerical Analysis of Plane Cracks in Strain-Gradient Elastic Materials
,”
Int. J. Fract.
,
141
(
3–4
), pp.
403
430
.
98.
Coleman
,
B. D.
, and
Hodgdon
,
M. L.
,
1988
, “
On the Localization of Strain in Shearing Motions of Ductile Materials
,”
Res. Mech.
,
23
, pp.
223
238
.
99.
Coleman
,
B. D.
, and
Newman
,
D. C.
,
1989
, “
On Adiabatic Shear Bands in Rigid-Plastic Materials
,”
Acta Mech.
,
78
(
3–4
), pp.
263
279
.
100.
Coleman
,
B. D.
, and
Newman
,
D. C.
,
1990
, “
Mechanics of Neck Formation in the Cold Drawing of Elastic Films
,”
Polym. Eng. Sci.
,
30
(
20
), pp.
1299
1302
.
101.
Coleman
,
B. D.
, and
Newman
,
D. C.
,
1992
, “
Rheology of Neck Formation in the Cold Drawing of Polymeric Fibers
,”
J. Appl. Polym. Sci.
,
45
(
6
), pp.
997
1004
.
102.
Batra
,
R. C.
,
1992
, “
Analysis of Shear Bands in Simple Shearing Deformations of Nonpolar and Dipolar Viscoplastic Materials
,”
ASME Appl. Mech. Rev.
,
45
(
3S
), pp.
S123
S131
.
103.
Batra
,
R. C.
, and
Chen
,
L.
,
1999
, “
Shear Band Spacing in Gradient-Dependent Thermoviscoplastic Materials
,”
Comput. Mech.
,
23
(
1
), pp.
8
19
.
104.
Chen
,
L.
, and
Batra
,
R. C.
,
1999
, “
Effect of Material Parameters on Shear Band Spacing in Work-Hardening Gradient Dependent Thermoviscoplastic Materials
,”
Int. J. Plast.
,
15
(
5
), pp.
551
574
.
105.
Acharya
,
A.
, and
Bassani
,
J. L.
,
1996
, “
On Non-Local Flow Theories That Reserve the Classical Structure of Incremental Boundary Value Problems
,”
Proceedings of the IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials
,
Paris
,
Aug. 29–Sept. 1
,
Kluwer
, pp.
3
9
.
106.
Acharya
,
A.
,
Cherukuri
,
H. P.
, and
Govindarajan
,
R. M.
,
1999
, “
New Proposal in Gradient Plasticity: Theory and Application in 1-D Quasi-Statics and Dynamics
,”
Mech. Cohesive-Frict. Mater.
,
4
(
2
), pp.
153
170
.
107.
Acharya
,
A.
, and
Bassani
,
J. L.
,
2000
, “
Lattice Incompatibility and a Gradient Theory of Crystal Plasticity
,”
J. Mech. Phys. Solids
,
48
(
8
), pp.
1565
1595
.
108.
Acharya
,
A.
,
Bassani
,
J. L.
, and
Baudoin
,
A.
,
2003
, “
Geometrically Necessary Dislocations, Hardening, and a Simple Gradient Theory of Crystal Plasticity
,”
Scr. Mater.
,
48
(
2
), pp.
167
172
.
109.
Acharya
,
A.
,
Tang
,
H.
,
Saigal
,
S.
, and
Bassani
,
J. L.
,
2004
, “
On Boundary Conditions and Plastic Strain-Gradient Discontinuity in Lower-Order Gradient Plasticity
,”
J. Mech. Phys. Solids
,
52
(
8
), pp.
1793
1826
.
110.
Polizzotto
,
C.
, and
Borino
,
G.
,
1998
, “
A Thermodynamics-Based Formulation of Gradient-Dependent Plasticity
,”
Eur. J. Mech. A Solids
,
17
(
5
), pp.
741
761
.
111.
Polizzotto
,
C.
,
2003
, “
Unified Thermodynamic Framework for Nonlocal/Gradient Continuum Theories
,”
Eur. J. Mech. A Solids
,
22
(
5
), pp.
651
668
.
112.
Polizzotto
,
C.
,
2009
, “
A Nonlocal Strain Gradient Plasticity Theory for Finite Deformations
,”
Int. J. Plast.
,
25
(
7
), pp.
1280
1300
.
113.
Polizzotto
,
C.
,
2011
, “
A Unified Residual-Based Thermodynamic Framework for Strain Gradient Theories of Plasticity
,”
Int. J. Plast.
,
27
(
3
), pp.
388
413
.
114.
Polizzotto
,
C.
,
2013
, “
A Second Strain Gradient Elasticity Theory With Second Velocity Gradient Inertia—Part I: Constitutive Equations and Quasi-Static Behavior
,”
Int. J. Solids Struct.
,
50
(
24
), pp.
3749
3765
.
115.
Polizzotto
,
C.
,
2014
, “
Surface Effects, Boundary Conditions and Evolution Laws Within Second Strain Gradient Plasticity
,”
Int. J. Plast.
,
60
, pp.
197
216
.
116.
Bammann
,
D. J.
,
2001
, “
A Model of Crystal Plasticity Containing a Natural Length Scale
,”
Mater. Sci. Eng. A
,
309–310
, pp.
406
410
.
117.
Hwang
,
K. C.
,
Jiang
,
H.
,
Huang
,
Y.
,
Gao
,
H.
, and
Hu
,
N.
,
2002
, “
A Finite Deformation Theory of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
50
(
1
), pp.
81
99
.
118.
Hwang
,
K. C.
,
Jiang
,
H.
,
Huang
,
Y.
, and
Gao
,
H.
,
2003
, “
Finite Deformation Analysis of Mechanism-Based Strain Gradient Plasticity: Torsion and Crack tip Field
,”
Int. J. Plast.
,
19
(
2
), pp.
235
251
.
119.
Hwang
,
K. C.
,
Guo
,
Y.
,
Jiang
,
H.
,
Huang
,
Y.
, and
Zhuang
,
Z.
,
2004
, “
The Finite Deformation Theory of Taylor-Based Nonlocal Plasticity
,”
Int. J. Plast.
,
20
(
4–5
), pp.
831
839
.
120.
Huang
,
Y.
,
Qu
,
S.
,
Hwang
,
K. C.
,
Li
,
M.
, and
Gao
,
H.
,
2004
, “
A Conventional Theory of Mechanism-Based Strain Gradient Plasticity
,”
Int. J. Plast.
,
20
(
4–5
), pp.
753
782
.
121.
Voyiadjis
,
G. Z.
, and
Abu Al-Rub
,
R. K.
,
2005
, “
Gradient Plasticity Theory With a Variable Length Scale Parameter
,”
Int. J. Solids Struct.
,
42
(
14
), pp.
3998
4029
.
122.
Abu Al-Rub
,
R. K.
, and
Voyiadjis
,
G. Z.
,
2006
, “
A Physically Based Gradient Plasticity Theory
,”
Int. J. Plast.
,
22
(
4
), pp.
654
684
.
123.
Voyiadjis
,
G. Z.
, and
Faghihi
,
D.
,
2012
, “
Thermo-Mechanical Strain Gradient Plasticity With Energetic and Dissipative Length Scales
,”
Int. J. Plast.
,
30–31
, pp.
218
247
.
124.
Voyiadjis
,
G. Z.
, and
Faghihi
,
D.
,
2013
, “
Gradient Plasticity for Thermo-Mechanical Processes in Metals With Length and Time Scales
,”
Philos. Mag.
,
93
(
9
), pp.
1013
1053
.
125.
Cardona
,
J.-M.
,
Forest
,
S.
, and
Sievert
,
R.
,
1999
, “
Towards a Theory of Second Grade Thermoelasticity
,”
Extracta Math.
,
14
(
2
), pp.
127
140
.
126.
Forest
,
S.
,
Cardona
,
J. M.
, and
Sievert
,
R.
,
2000
,
Continuum Thermomechanics, The Art and Science of Modelling Material Behavior, Paul Germain’s Anniversary Volume
,
G.
Maugin
,
R.
Drouot
, and
F.
Sidoroff
, eds.,
Kluwer Academic Publishers
,
Dordrecht
, pp.
163
176
.
127.
Forest
,
S.
,
2008
, “
The Micromorphic Approach to Plasticity and Diffusion
,”
Proceedings of the International Conference on Continuum Models and Discrete Systems 11 (CMDS11)
,
Paris, France
,
July 30–Aug. 3, 2007
, pp.
105
112
.
128.
Forest
,
S.
,
2009
, “
The Micromorphic Approach for Gradient Elasticity, Viscoplasticity and Damage
,”
ASCE J. Eng. Mech.
,
135
(
3
), pp.
117
131
.
129.
Forest
,
S.
, and
Sievert
,
R.
,
2003
, “
Elastoviscoplastic Constitutive Frameworks for Generalized Continua
,”
Acta Mech.
,
160
(
1–2
), pp.
71
111
.
130.
Forest
,
S.
,
Cordero
,
N. M.
, and
Busso
,
E. P.
,
2011
, “
First vs. Second Gradient of Strain Theory for Capillarity Effects in an Elastic Fluid at Small Length Scales
,”
Comput. Mater. Sci.
,
50
(
4
), pp.
1299
1304
.
131.
Menzel
,
A.
, and
Steinmann
,
P.
,
2000
, “
On the Continuum Formulation of Higher Gradient Plasticity for Single and Polycrystals
,”
J. Mech. Phys. Solids
,
48
(
8
), pp.
1777
1796
.
132.
Menzel
,
A.
, and
Steinmann
,
P.
,
1998
, “
On the Formulation of Higher Gradient Single and Polycrystal Plasticity
,”
J. Phys. IV
,
8
(Part 8), pp.
239
247
.
133.
Kirchner
,
N.
, and
Steinmann
,
P.
,
2007
, “
On the Material Setting of Gradient Hyperelasticity
,”
Math. Mech. Solids
,
12
(
5
), pp.
559
580
.
134.
Sunyk
,
R.
, and
Steinmann
,
P.
,
2003
, “
On Higher Gradients in Continuum-Atomistic Modelling
,”
Int. J. Solids Struct.
,
40
(
24
), pp.
6877
6896
.
135.
Sunyk
,
R.
, and
Steinmann
,
P.
,
2006
, “
Transition to Plasticity in Continuum-Atomistic Modelling
,”
Multidiscipl. Model. Mater. Struct.
,
2
(
3
), pp.
1
38
.
136.
Geers
,
M. G. D.
,
Peerlings
,
R. H. J.
,
de Borst
,
R.
, and
Brekelmans
,
W. A. M.
,
1998
,
Material Instabilities in Solids
,
R.
de Borst
, and
E.
van der Giessen
, eds.,
John Wiley & Sons Ltd.
,
Chichester
, pp.
405
424
.
137.
Peerlings
,
R. H. J.
,
de Borst
,
R.
,
Brekelmans
,
W. A. M.
, and
de Vree
,
J. H. P.
,
1996
, “
Gradient-Enhanced Damage for Quasi-Brittle Materials
,”
Int. J. Numer. Methods Eng.
,
39
(
19
), pp.
3391
3403
.
138.
Peerlings
,
R. H. J.
,
de Borst
,
R.
,
Brekelmans
,
W. A. M.
, and
Geers
,
M. G. D.
,
1998
, “
Gradient-Enhanced Damage Modelling of Concrete Fracture
,”
Mech. Cohesive-Frict. Mater.
,
3
(
4
), pp.
323
342
.
139.
Anand
,
L.
,
Aslan
,
O.
, and
Chester
,
S. A.
,
2012
, “
A Large-Deformation Gradient Theory for Elastic-Plastic Materials: Strain Softening and Regularization of Shear Bands
,”
Int. J. Plast.
,
30–31
, pp.
116
143
.
140.
Neff
,
P.
,
2008
, “
Remarks on Invariant Modelling in Finite Strain Gradient Plasticity
,”
Tech. Mech.
,
28
(
1
), pp.
13
21
.
141.
Neff
,
P.
,
Chelminski
,
K.
, and
Alber
,
H.-D.
,
2009
, “
Notes on Strain Gradient Plasticity: Finite Strain Covariant Modelling and Global Existence in the Infinitesimal Rate-Independent Case
,”
Math. Models Methods Appl. Sci.
,
19
(
2
), pp.
307
346
.
142.
Bertram
,
A.
,
2015
, “
Finite Gradient Elasticity and Plasticity: A Constitutive Mechanical Framework
,”
Continuum Mech. Thermodyn.
,
27
(
6
), pp.
1039
1058
.
143.
Bertram
,
A.
, and
Glüge
,
R.
,
2016
, “
Gradient Materials With Internal Constraints
,”
Math. Mech. Complex Syst.
,
4
(
1
), pp.
1
15
.
144.
de Borst
,
R.
, and
Mühlhaus
,
H.-B.
,
1992
, “
Gradient-Dependent Plasticity: Formulation and Algorithmic Aspects
,”
Int. J. Numer. Methods Eng.
,
35
(
3
), pp.
521
539
.
145.
Sluys
,
L. J.
,
de Borst
,
R.
, and
Mühlhaus
,
H. B.
,
1993
, “
Wave Propagation, Localization and Dispersion in a Gradient-Dependent Medium
,”
Int. J. Solids Struct.
,
30
(
9
), pp.
1153
1171
.
146.
de Borst
,
R.
,
Sluys
,
L. J.
,
Muhlhaus
,
H.-B.
, and
Pamin
,
J.
,
1993
, “
Fundamental Issues in Finite Element Analyses of Localization of Deformation
,”
Eng. Comput.
,
10
(
2
), pp.
99
121
.
147.
Belytschko
,
T.
, and
Lasry
,
D.
,
1988
, “
Localization limiters and numerical strategies for strain-softening materials
,”
Strain Localization and Size Effect Due to Cracking and Damage
,
Paris, France
,
Sept. 6–9
, pp.
349
362
.
148.
Lasry
,
D.
, and
Belytschko
,
T.
,
1988
, “
Localization Limiters in Transient Problems
,”
Int. J. Solids Struct.
,
24
(
6
), pp.
581
597
.
149.
Kulkarni
,
M.
, and
Belytschko
,
T.
,
1991
, “
On the Effect of Imperfections and Spatial Gradient Regularization in Strain Softening Viscoplasticity
,”
Mech. Res. Commun.
,
18
(
6
), pp.
335
343
.
150.
Estrin
,
Y.
, and
Kubin
,
L. P., eds.
,
1993
, “
Viewpoint Set No. 21
,”
Scripta Metall.
,
29
, pp.
1147
1188
.
151.
Estrin
,
Y.
, and
Kubin
,
L. P.
,
1989
, “
Collective Dislocations Behavior in Dilute Alloys and the Portevin-Le Chatelier Effect
,”
J. Mech. Behav. Mater.
,
2
(
3–4
), pp.
255
292
.
152.
Hähner
,
P.
,
1993
, “
Modelling the Spatiotemporal Aspects of the Portevin-Le Chatelier Effect
,”
Mater. Sci. Eng. A
,
164
(
1–2
), pp.
23
34
.
153.
Hähner
,
P.
,
1993
, “
Dislocation Dynamics and Instabilities of Plastic Deformation—Nonlinear Phenomena Far From Equilibrium
,”
Mater. Sci. Forum
,
123–125
, pp.
701
710
.
154.
Zaiser
,
M.
, and
Hahner
,
P.
,
1997
, “
Oscillatory Modes of Plastic Deformation: Theoretical Concepts
,”
Phys. Stat. Sol. B
,
199
(
2
), pp.
267
330
.
155.
Hähner
,
P.
,
Ziegenbein
,
A.
,
Rizzi
,
E.
, and
Neuhäuser
,
H.
,
2002
, “
Spatiotemporal Analysis of Portevin-Le Chatelier Deformation Bands: Theory, Simulation, and Experiment
,”
Phys. Rev. B
,
65
(
13
), p.
134109
.
You do not currently have access to this content.