Abstract

High strain rate simulations were performed using the multiscale dislocation dynamic plasticity (MDDP) method to calculate different rise times and load durations in mimicking high deformation rate shock or isentropic (ramp) testing of α-iron and tantalum crystals. The focus for both types of loading on both materials was on the inter-relationship between the (dislocation-velocity-related) strain rate sensitivity and the (time-dependent) evolution of dislocation density. The computations are compared with model thermal activation strain rate analysis (TASRA), phonon drag, and dislocation-generation predictions. The overall comparison of simulated tests and previous experimental measurements shows that the imposition of a rise time even as small as 0.2 ns preceding plastic relaxation via the MDDP method is indicative of relatively weak shock behavior.

References

1.
Smith
,
R. F.
,
Eggert
,
J. H.
,
Rudd
,
R. E.
,
Swift
,
D. C.
,
Bolme
,
C. A.
, and
Collins
,
G. W.
,
2011
, “
High Strain-Rate Plastic Flow in Al and Fe
,”
J. Appl. Phys.
,
110
(
12
), p.
123515
.
2.
Cereceda
,
D.
,
Diehl
,
M.
,
Roters
,
F.
,
Raabe
,
D.
,
Perlado
,
J. M.
, and
Marian
,
J.
,
2016
, “
Unraveling the Temperature Dependence of the Yield Strength in Single-Crystal Tungsten Using Atomistically-Informed Crystal Plasticity Calculations
,”
Int. J. Plast.
,
78
, pp.
242
265
.
3.
Gurrutxaga-Lerma
,
B.
,
Shehadeh
,
M. A.
,
Balint
,
D. S.
,
Dini
,
D.
,
Chen
,
L.
, and
Eakins
,
D. E.
,
2017
, “
The Effect of Temperature on the Elastic Precursor Decay in Shock Loaded FCC Aluminium and BCC Iron
,”
Int. J. Plast.
,
96
, pp.
135
155
.
4.
Zaretsky
,
E. B.
, and
Kanel
,
G. I.
,
2014
, “
Tantalum and Vanadium Response to Shock-Wave Loading at Normal and Elevated Temperatures. Non-Monotonous Decay of the Elastic Wave in Vanadium
,”
J. Appl. Phys.
,
115
(
24
), p.
243502
.
5.
Smith
,
R. F.
,
Eggert
,
J. H.
,
Jankowski
,
A.
,
Celliers
,
P. M.
,
Edwards
,
M. J.
,
Gupta
,
Y. M.
,
Asay
,
J. R.
, and
Collins
,
G. W.
,
2007
, “
Stiff Response of Aluminum Under Ultrafast Shockless Compression to 110 GPA
,”
Phys. Rev. Lett.
,
98
(
6
), p.
065701
.
6.
Armstrong
,
R. W.
,
Arnold
,
W.
, and
Zerilli
,
F. J.
,
2007
, “
Dislocation Mechanics of Shock-Induced Plasticity
,”
Metall. Mater. Trans. A
,
38
(
11
), pp.
2605
2610
.
7.
Armstrong
,
R. W.
, and
Zerilli
,
F. J.
,
2010
, “
High Rate Straining of Tantalum and Copper
,”
J. Phys. D: Appl. Phys.
,
43
(
49
), p.
492002
.
8.
Armstrong
,
R. W.
, and
Li
,
Q.
,
2015
, “
Dislocation Mechanics of High-Rate Deformations
,”
Metall. Mater. Trans. A
,
46
(
10
), pp.
4438
4453
.
9.
Eggert
,
J. H.
,
Smith
,
R. F.
,
Swift
,
D. C.
,
Rudd
,
R. E.
,
Fratanduono
,
D. E.
,
Braun
,
D. G.
,
Hawreliak
,
J. A.
,
McNaney
,
J. M.
, and
Collins
,
G. W.
,
2015
, “
Ramp Compression of Tantalum to 330 GPa
,”
High Pressure Res.
,
35
(
4
), pp.
339
354
.
10.
Asay
,
J. R.
,
Ao
,
T.
,
Vogler
,
T. J.
,
Davis
,
J. P.
, and
Gray
,
G. T.
,
2009
, “
Yield Strength of Tantalum for Shockless Compression to 18 GPa
,”
J. Appl. Phys.
,
106
(
7
), p.
073515
.
11.
Zepeda-Ruiz
,
L. A.
,
Stukowski
,
A.
,
Oppelstrup
,
T.
, and
Bulatov
,
V. V.
,
2017
, “
Probing the Limits of Metal Plasticity With Molecular Dynamics Simulations
,”
Nature
,
550
(
7677
), pp.
492
495
.
12.
Armstrong
,
R. W.
,
Arnold
,
W.
, and
Zerilli
,
F. J.
,
2009
, “
Dislocation Mechanics of Copper and Iron in High Rate Deformation Tests
,”
J. Appl. Phys.
,
105
(
2
), p.
023511
.
13.
Orowan
,
E.
,
1940
, “
Problems of Plastic Gliding
,”
Proc. Phys. Soc.
,
52
(
1
), pp.
8
22
.
14.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1987
, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations Calculations
,”
J. Appl. Phys.
,
5
(
5
), pp.
1816
1825
.
15.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1990
, “
Description of Tantalum Deformation Behavior by Dislocation Mechanics Based Constitutive Relations
,”
J. Appl. Phys.
,
68
(
4
), pp.
1580
1591
.
16.
Lea
,
L.
,
Brown
,
L.
, and
Jardine
,
A.
,
2020
, “
Time Limited Self-Organised Criticality in the High Rate Deformation of Face Centred Cubic Metals
,”
Commun. Mater.
,
1
(
1
), pp.
1
8
.
17.
Swegle
,
J. W.
, and
Grady
,
D. E.
,
1985
, “
Shock Viscosity and the Prediction of Shock Wave Rise Times
,”
J. Appl. Phys.
,
58
(
2
), pp.
692
701
.
18.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1992
, “
The Effect of Dislocation Drag on the Stress-Strain Behavior of FCC Metals
,”
Acta Metall. Mater.
,
40
(
8
), pp.
1803
1808
.
19.
El Ters
,
P.
, and
Shehadeh
,
M. A.
,
2019
, “
Modeling the Temperature and High Strain Rate Sensitivity in BCC Iron: Atomistically Informed Multiscale Dislocation Dynamics Simulations
,”
Int. J. Plast.
,
112
, pp.
257
277
.
20.
Zbib
,
H. M.
, and
Diaz de la Rubia
,
T.
,
2002
, “
A Multiscale Model of Plasticity
,”
Int. J. Plast.
,
18
(
9
), pp.
1133
1163
.
21.
Yasin
,
H.
,
Zbib
,
H. M.
, and
Khaleel
,
M. A.
,
2001
, “
Size and Boundary Effects in Discrete Dislocation Dynamics : Coupling With Continuum Finite Element
,”
Mater. Sci. Eng. A
,
309
, pp.
294
299
.
22.
Kattoura
,
M.
, and
Shehadeh
,
M. A.
,
2014
, “
On the Ultra-High-Strain Rate Shock Deformation in Copper Single Crystals: Multiscale Dislocation Dynamics Simulations
,”
Philos. Mag. Lett.
,
94
(
7
), pp.
415
423
.
23.
Gillis
,
P. P.
,
Gilman
,
J. J.
, and
Taylor
,
J. W.
,
1969
, “
Stress Dependences of Dislocation Velocities
,”
Philos. Mag.
,
20
(
164
), pp.
279
289
.
24.
Gurrutxaga-Lerma
,
B.
,
2016
, “
The Role of the Mobility Law of Dislocations in the Plastic Response of Shock Loaded Pure Metals
,”
Modell. Simul. Mater. Sci. Eng.
,
24
(
6
), p.
065006
.
25.
Zbib
,
H. M.
,
Hiratani
,
M.
, and
Shehadeh
,
M. A.
,
2005
, “
Multiscale Discrete Dislocation Dynamics Plasticity
,”
Continuum Scale Simulation of Engineering Materials: Fundamentals-Microstructures-Process Applications
, pp.
201
229
.
26.
Bhate
,
N.
,
Clifton
,
R. J.
,
Kumar
,
S.
, and
Phillips
,
R.
,
2002
, “Computational and Experimental Studies of Dislocation Dynamics,”
Shock Compression in Condensed Matter–2001: Proceeding of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter
,
M. D.
Furnish
,
N. N.
Thadani
, and
Y.
Hori
, eds.,
American Institute of Physics
,
New York
.
27.
Hirth
,
J. P.
,
Zbib
,
H. M.
, and
Lothe
,
J.
,
1998
, “
Forces on High Velocity Dislocations
,”
Modell. Simul. Mater. Sci. Eng.
,
6
(
2
), pp.
165
169
.
28.
Leibfried
,
G.
,
1950
, “
Über den Einflußthermisch Angeregter Schallwellen auf die Plastische Deformation
,”
Z. Phys.
,
127
(
4
), pp.
344
356
.
29.
Olmsted
,
D. L.
,
Hector
,
L. G.
,
Curtin
,
W. A.
, and
Clifton
,
R. J.
,
2005
, “
Atomistic Simulations of Dislocation Mobility in Al, Ni and Al/Mg Alloys
,”
Modell. Simul. Mater. Sci. Eng.
,
13
(
3
), p.
371–
388
.
30.
Firdu
,
F. T.
, and
Taskinen
,
P.
,
2010
, “
Densities of Molten and Solid Alloys of (Fe, Cu, Ni, Co)—S at Elevated Temperatures—Literature Review and Analysis
,”
Aalto University Publications in Materials Science and Engineering, Multiprint Oy, Espoo
.
31.
Tarumi
,
R.
,
Shiraishi
,
K.
, and
Hirao
,
M.
,
2009
, “
High Temperature Elastic Constants of α-Fe Single Crystal Studied by Electromagnetic Acoustic Resonance
,”
ISIJ Int.
,
49
(
9
), pp.
1432
1435
.
32.
Sha
,
X.
, and
Cohen
,
R. E.
,
2006
, “
First-Principles Thermoelasticity of BCC Iron Under Pressure
,”
Phys. Rev. B
,
74
(
21
), p.
214111
.
33.
Wang
,
Z. Q.
, and
Beyerlein
,
I. J.
,
2011
, “
An Atomistically-Informed Dislocation Dynamics Model for the Plastic Anisotropy and Tension-Compression Asymmetry of BCC Metals
,”
Int. J. Plast.
,
27
(
10
), pp.
1471
1484
.
34.
Gulseren
,
O.
, and
Cohen
,
R. E.
,
2002
, “
High Pressure Thermoelasticity of Body-Centered Cubic Tantalum
,”
Phys. Rev. B
,
65
(
6
), p.
064103
.
35.
El Ters
,
P.
, and
Shehadeh
,
M. A.
,
2020
, “
On the Strain Rate Sensitivity of Size-Dependent Plasticity in BCC Iron at Elevated Temperatures: Discrete Dislocation Dynamics Investigation
,”
Mech. Mater.
,
148
, p.
103494
.
36.
Shehadeh
,
M. A.
,
2012
, “
Multiscale Dislocation Dynamics Simulations of Shock-Induced Plasticity in Small Volumes
,”
Philos. Mag.
,
92
(
10
), pp.
1173
1197
.
37.
Shehadeh
,
M. A.
,
Bringa
,
E. M.
,
Zbib
,
H. M.
,
McNaney
,
J. M.
, and
Remington
,
B. A.
,
2006
, “
Simulation of Shock-Induced Plasticity Including Homogeneous and Heterogeneous Dislocation Nucleations
,”
Appl. Phys. Lett.
,
89
(
17
), p.
171918
.
38.
Shehadeh
,
M. A.
,
Zbib
,
H. M.
, and
De La Rubia
,
T. D.
,
2005
, “
Multiscale Dislocation Dynamics Simulations of Shock Compression in Copper Single Crystal
,”
Int. J. Plast.
,
21
(
12
), pp.
2369
2390
.
39.
Shehadeh
,
M. A.
, and
Zbib
,
H. M.
,
2016
, “
On the Homogeneous Nucleation and Propagation of Dislocations Under Shock Compression
,”
Philos. Mag.
,
96
(
26
), pp.
2752
2778
.
40.
Shehadeh
,
M. A.
,
2011
, “
Modeling Shock Induced Plasticity in Copper Single Crystal: Numerical and Strain Localization Issues
,”
Adv. Mater. Res.
,
324
, pp.
193
196
.
41.
Hammel
,
B.
,
Swift
,
D.
,
El-Dasher
,
B.
,
Kumar
,
M.
,
Collins
,
G. W.
, and
Florando
,
J.
,
2012
, “
Plastic Behavior of Polycrystalline Tantalum in the 5 × 107/s Regime
,”
AIP Conf. Proc.
,
1426
(
1
), pp.
931
934
.
42.
Arnold
,
W.
,
1992
, “
Dynamisches Werkstoffverhalten von Armco-Eisen bei Stoßwellenbelastung (Only in German Available, “Dynamical Material Behavior of Armco-Iron Under Schock Wave Loading“
,”
Ph.D. thesis
,
VDI-Verlag
,
Duesseldorf
.
43.
Evans
,
A. G.
, and
Rawlings
,
R. D.
,
1969
, “
The Thermally Activated Deformation of Crystalline Materials
,”
Phys. Status Solidi B
,
34
(
1
), pp.
9
31
.
44.
Zhu
,
T.
, and
Li
,
J.
,
2010
, “
Ultra-Strength Materials
,”
Prog. Mater. Sci.
,
55
(
7
), pp.
710
757
.
45.
Armstrong
,
R. W.
,
1973
, “
Thermal Activation Strain Rate Analysis (TASRA) for Polycrystalline Metals
,” JSIR, 32.
46.
Queyreau
,
S.
,
Marian
,
J.
,
Gilbert
,
M. R.
, and
Wirth
,
B. D.
,
2011
, “
Edge Dislocation Mobilities in BCC Fe Obtained by Molecular Dynamics
,”
Phys. Rev. B
,
84
(
6
), p.
064106
.
47.
Rudd
,
R. E.
,
Comley
,
A. J.
,
Hawreliak
,
J.
,
Maddox
,
B.
,
Park
,
H. S.
, and
Remington
,
B. A.
,
2012
, “
Theory and Simulation of 1D TO 3D Plastic Relaxation in Tantalum
,”
AIP Conf. Proc.
,
1426
(
1
), pp.
1379
1382
.
48.
Tramontina
,
D.
,
Erhart
,
P.
,
Germann
,
T.
,
Hawreliak
,
J.
,
Higginbotham
,
A.
,
Park
,
N.
,
Ravelo
,
R.
,
Stukowski
,
A.
,
Suggit
,
M.
,
Tang
,
Y.
,
Wark
,
J.
, and
Bringa
,
E.
,
2014
, “
Molecular Dynamics Simulations of Shock-Induced Plasticity in Tantalum
,”
High Energy Density Phys.
,
10
, pp.
9
15
.
You do not currently have access to this content.