Abstract

The microstructure and mechanical hardness of Inconel 718 (INC718) hexagonal honeycomb cellular structure manufactured by selective laser melting (SLM) was studied in this work. Non-heat-treated SLM-produced samples with cell wall thicknesses of 0.4, 0.6, and 0.8 mm were studied. The hardness was measured using MTS Nanoindenter at different temperatures and strain rates. At room temperature, continuous hardness measurements through a penetration depth of 2 µm using three different strain rates (0.02, 0.05, and 0.08 s−1) were performed. At the temperatures 100 and 200 °C, single hardness measurements at eight different maximum loads were performed. Using scanning ion microscopy (SIM), the grain size was found to change significantly as the cell wall thickness reduced from 0.6 mm to 0.4 mm compared to the change from 0.8 mm to 0.6 mm. A similar trend in mechanical hardness reduction was observed in the three samples. The microstructure, hardness, and strain rate sensitivity displayed anisotropy in properties between the planes parallel and perpendicular to the build direction. A model describing the temperature, strain rate, and indentation size effects on hardness developed by the second author was modified and used to evaluate the intrinsic material length scale used in gradient plasticity theory.

References

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
, 2nd ed.,
Cambridge University Press
.
2.
Bhate
,
D.
,
2019
, “
Four Questions in Cellular Material Design
,”
Materials
,
12
(
7
), p.
1060
.
3.
Wadley
,
H. N. G.
,
2006
, “
Multifunctional Periodic Cellular Metals
,”
Philos. Trans. R. Soc., A
,
364
(
1838
), pp.
31
68
.
4.
Harun
,
W. S. W.
,
Kamariah
,
M. S. I. N.
,
Muhamad
,
N.
,
Ghani
,
S. A. C.
,
Ahmad
,
F.
, and
Mohamed
,
Z.
,
2018
, “
A Review of Powder Additive Manufacturing Processes for Metallic Biomaterials
,”
Powder Technol.
,
327
, pp.
128
151
.
5.
Piticescu
,
R.
,
Vlaicu
,
I.
,
Katz-Demyanetz
,
A.
,
Popov
,
V. V.
,
Kovalevsky
,
A.
,
Safranchik
,
D.
, and
Koptyug
,
A.
,
2019
, “
Powder-Bed Additive Manufacturing for Aerospace Application: Techniques, Metallic and Metal/Ceramic Composite Materials and Trends
,”
Manuf. Rev.
,
6
.
6.
Xiao
,
L.
, and
Song
,
W.
,
2018
, “
Additively-Manufactured Functionally Graded Ti-6Al-4V Lattice Structures With High Strength Under Static and Dynamic Loading: Experiments
,”
Int. J. Impact Eng.
,
111
, pp.
255
272
.
7.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Composites, Part B
,
143
, pp.
172
196
.
8.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
, “
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
.”
9.
A. 52900:2015
,
2015
, “
Standard Terminology for Additive Manufacturing—General Principles—Terminology
,”
ISO/ASTM52900-15 Standard Terminology for Additive Manufacturing – General Principles – Terminology, ASTM International, West Conshohocken, PA
, pp.
1
9
.
10.
Alkhader
,
M.
, and
Vural
,
M.
,
2008
, “
Mechanical Response of Cellular Solids: Role of Cellular Topology and Microstructural Irregularity
,”
Int. J. Eng. Sci.
,
46
(
10
), pp.
1035
1051
.
11.
Kucewicz
,
M.
,
Baranowski
,
P.
,
Małachowski
,
J.
,
Popławski
,
A.
, and
Płatek
,
P.
,
2018
, “
Modelling, and Characterization of 3D Printed Cellular Structures
,”
Mater. Des.
,
142
, pp.
177
189
.
12.
Szymczyk
,
P.
,
Hoppe
,
V.
,
Ziółkowski
,
G.
,
Smolnicki
,
M.
, and
Madeja
,
M.
,
2020
, “
The Effect of Geometry on Mechanical Properties of Ti6Al4 V ELI Scaffolds Manufactured Using Additive Manufacturing Technology
,”
Arch. Civ. Mech. Eng.
,
20
(
1
), pp.
1
13
.
13.
Soltani-Tehrani
,
A.
,
Lee
,
S.
,
Sereshk
,
M. R. V.
, and
Shamsaei
,
N.
,
2019
, “
Effects of Unit Cell Size on the Mechanical Performance of Additive Manufactured Lattice Structures
,”
Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference
,
Austin, TX
,
August
, pp.
2254
2262
.
14.
Maskery
,
I.
,
Aremu
,
A. O.
,
Simonelli
,
M.
,
Tuck
,
C.
,
Wildman
,
R. D.
,
Ashcroft
,
I. A.
, and
Hague
,
R. J. M.
,
2015
, “
Mechanical Properties of Ti-6Al-4V Selectively Laser Melted Parts With Body-Centred-Cubic Lattices of Varying Cell Size
,”
Exp. Mech.
,
55
(
7
), pp.
1261
1272
.
15.
Hedayati
,
R.
,
Sadighi
,
M.
,
Mohammadi Aghdam
,
M.
, and
Zadpoor
,
A. A.
,
2016
, “
Mechanical Properties of Additively Manufactured Thick Honeycombs
,”
Materials
,
9
(
8
), p.
613
.
16.
Płatek
,
P.
,
Baranowski
,
P.
,
Cieplak
,
K.
,
Sarzyński
,
M.
,
Sienkiewicz
,
J.
,
Janiszewski
,
J.
, and
Małachowski
,
J.
,
2019
, “
Investigation on Deformation Process of Cellular Structures With Gradient Topology Manufactured Additively
,”
AIP Conf. Proc.
,
2078
(
1
), p.
020108
.
17.
Gu
,
D. D.
,
Meiners
,
W.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms
,”
Int. Mater. Rev.
,
57
(
3
), pp.
133
164
.
18.
Sangid
,
M. D.
,
Book
,
T. A.
,
Naragani
,
D.
,
Rotella
,
J.
,
Ravi
,
P.
,
Finch
,
A.
,
Kenesei
,
P.
,
Park
,
J. S.
,
Sharma
,
H.
,
Almer
,
J.
, and
Xiao
,
X.
,
2018
, “
Role of Heat Treatment and Build Orientation in the Microstructure Sensitive Deformation Characteristics of IN718 Produced via SLM Additive Manufacturing
,”
Addit. Manuf.
,
22
, pp.
479
496
.
19.
Choi
,
J. P.
,
Shin
,
G. H.
,
Yang
,
S.
,
Yang
,
D. Y.
,
Lee
,
J. S.
,
Brochu
,
M.
, and
Yu
,
J. H.
,
2017
, “
Densification and Microstructural Investigation of Inconel 718 Parts Fabricated by Selective Laser Melting
,”
Powder Technol.
,
310
, pp.
60
66
.
20.
Deng
,
D.
,
Peng
,
R. L.
,
Brodin
,
H.
, and
Moverare
,
J.
,
2018
, “
Microstructure and Mechanical Properties of Inconel 718 Produced by Selective Laser Melting: Sample Orientation Dependence and Effects of Post Heat Treatments
,”
Mater. Sci. Eng. A
,
713
, pp.
294
306
.
21.
Strößner
,
J.
,
Terock
,
M.
, and
Glatzel
,
U.
,
2015
, “
Mechanical and Microstructural Investigation of Nickel-Based Superalloy IN718 Manufactured by Selective Laser Melting (SLM)
,”
Adv. Eng. Mater.
,
17
(
8
), pp.
1099
1105
.
22.
Munther
,
M.
,
Palma
,
T.
,
Tavangarian
,
F.
,
Beheshti
,
A.
, and
Davami
,
K.
,
2020
, “
Nanomechanical Properties of Additively and Traditionally Manufactured Nickel-Chromium-Based Superalloys Through Instrumented Nanoindentation
,”
Manuf. Lett.
,
23
, pp.
39
43
.
23.
Wang
,
Z.
,
Guan
,
K.
,
Gao
,
M.
,
Li
,
X.
,
Chen
,
X.
, and
Zeng
,
X.
,
2012
, “
The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting
,”
J. Alloys Compd.
,
513
, pp.
518
523
.
24.
Zhang
,
D.
,
Feng
,
Z.
,
Wang
,
C.
,
Wang
,
W.
,
Liu
,
Z.
, and
Niu
,
W.
,
2018
, “
Comparison of Microstructures and Mechanical Properties of Inconel 718 Alloy Processed by Selective Laser Melting and Casting
,”
Mater. Sci. Eng. A
,
724
, pp.
357
367
.
25.
Wang
,
H.
,
Dhiman
,
A.
,
Ostergaard
,
H. E.
,
Zhang
,
Y.
,
Siegmund
,
T.
,
Kruzic
,
J. J.
, and
Tomar
,
V.
,
2019
, “
Nanoindentation Based Properties of Inconel 718 at Elevated Temperatures: A Comparison of Conventional Versus Additively Manufactured Samples
,”
Int. J. Plast.
,
120
, pp.
380
394
.
26.
Voyiadjis
,
G. Z.
,
Faghihi
,
D.
, and
Zhang
,
C.
,
2011
, “
Analytical and Experimental Determination of Rate and Temperature-Dependent Length Scales Using Nanoindentation Experiments
,”
J. Nanomech. Micromec.
,
1
(
1
), pp.
24
40
.
27.
S. Specification
,
2010
, “
Standard Specification for Precipitation-Hardening Nickel Alloy (UNS N07718) Plate, Sheet, and Strip for High-Temperature Service 1
,”
Annual. B. ASTM Standard. 07
, pp.
7
10
.
28.
Munroe
,
P. R.
,
2009
, “
The Application of Focused ion Beam Microscopy in the Material Sciences
,”
Mater. Charact.
,
60
(
1
), pp.
1
13
.
29.
Canovic
,
S.
,
Jonsson
,
T.
, and
Halvarsson
,
M.
,
2008
, “
Grain Contrast Imaging in FIB and SEM
,”
J. Phys. Conf. Ser.
,
126
(
1
), p.
012054
.
30.
MTS Systems Corporation
,
2002
, “The Nano Indenter ® XP,” 405.
31.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
2004
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
,
19
(
1
), p.
3
.
32.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
33.
Lucas
,
B. N.
, and
Oliver
,
W. C.
,
1999
, “
Indentation Power-Law Creep of High-Purity Indium
,”
Metall. Mater. Trans. A
,
30
(
3
), pp.
601
610
.
34.
Voyiadjis
,
G. Z.
,
Abo Znemah
,
R.
,
Wood
,
P.
,
Gunputh
,
U.
, and
Zhang
,
C.
,
2020
, “
Effect of Element Wall Thickness on the Homogeneity and Isotropy of Hardness in SLM IN718 Using Nanoindentation
,”
Mech. Res. Commun.
,
114
, p.
103568
.
35.
Voyiadjis
,
G. Z.
, and
Yaghoobi
,
M.
,
2016
, “
Role of Grain Boundary on the Sources of Size Effects
,”
Comput. Mater. Sci.
,
117
, pp.
315
329
.
36.
Voyiadjis
,
G. Z.
, and
Zhang
,
C.
,
2015
, “
The Mechanical Behavior During Nanoindentation Near the Grain Boundary in a Bicrystal FCC Metal
,”
Mater. Sci. Eng. A
,
621
, pp.
218
228
.
37.
Yang
,
B.
, and
Vehoff
,
H.
,
2007
, “
Dependence of Nanohardness upon Indentation Size and Grain Size—A Local Examination of the Interaction Between Dislocations and Grain Boundaries
,”
Acta Mater.
,
55
(
3
), pp.
849
856
.
38.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1825
1857
.
39.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
3
), pp.
411
425
.
40.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
295
361
.
41.
Hollomon
,
H.
,
1945
, “Tensile Deformation,” AIME TRANS.
42.
Taylor
,
G.
,
1934
, “
The Mechanism of Plastic Deformation of Crystals. Part I.—Theoretical
,”
Proc. R. Soc. A
,
145
(
855
), pp.
362
387
.
43.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity—I. Theory
,”
J. Mech. Phys. Solids
,
47
(
6
), pp.
1239
1263
.
44.
Huang
,
Y.
,
Gao
,
H.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
2000
, “
Mechanism-Based Strain Gradient Plasticity—II. Analysis
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
99
128
.
45.
Columbus
,
D.
, and
Grujicic
,
M.
,
2002
, “
A Comparative Discrete-Dislocation/Nonlocal Crystal-Plasticity Analysis of Plane-Strain Mode I Fracture
,”
Mater. Sci. Eng. A
,
323
(
1–2
), pp.
386
402
.
46.
Gao
,
H.
,
Huang
,
Y.
, and
Nix
,
W. D.
,
1999
, “
Modeling Plasticity at the Micrometer Scale
,”
Naturwissenschaften
,
88
(
11
), pp.
507
515
.
47.
Arsenlis
,
A.
, and
Parks
,
D. M.
,
1999
, “
Crystallographic Aspects of Geometrically-Necessary and Statistically-Stored Dislocation Density
,”
Acta Mater.
,
47
(
5
), pp.
1597
1561
.
48.
Davoudi
,
K. M.
, and
Vlassak
,
J. J.
,
2018
, “
Dislocation Evolution During Plastic Deformation: Equations vs. Discrete Dislocation Dynamics Study
,”
J. Appl. Phys.
,
123
(
8
), p.
085302
.
49.
Kundu
,
A.
, and
Field
,
D. P.
,
2018
, “
Geometrically Necessary Dislocation Density Evolution in Interstitial Free Steel at Small Plastic Strains
,”
Metall. Mater. Trans. A
,
49
(
8
), pp.
3274
3282
.
50.
Voyiadjis
,
G. Z.
, and
Peters
,
R.
,
2010
, “
Size Effects in Nanoindentation: An Experimental and Analytical Study
,”
Acta Mech.
,
211
(
1–2
), pp.
131
153
.
51.
Mitsui
,
T.
,
1953
, “
The Hardness of Metals, D. Tabor 1951, Oxford, p. 175, 15s
,”
J. Soc. Mech. Eng.
,
54
(
414
), pp.
592
593
.
52.
Xue
,
Z.
,
Huang
,
Y.
,
Hwang
,
K. C.
, and
Li
,
M.
,
2002
, “
The Influence of Indenter Tip Radius on the Micro-indentation Hardness
,”
ASME J. Eng. Mater. Technol.
,
124
(
3
), pp.
371
379
.
53.
Voyiadjis
,
G. Z.
, and
Al-Rub
,
R. K. A.
,
2005
, “
Gradient Plasticity Theory With a Variable Length Scale Parameter
,”
Int. J. Solids Struct.
,
42
(
14
), pp.
3998
4029
.
54.
Wang
,
Y.
,
Shao
,
W. Z.
,
Zhen
,
L.
,
Yang
,
L.
, and
Zhang
,
X. M.
,
2008
, “
Flow Behavior and Microstructures of Superalloy 718 During High Temperature Deformation
,”
Mater. Sci. Eng. A
,
497
(
1–2
), pp.
479
486
.
55.
Mayo
,
M. J.
, and
Nix
,
W. D.
,
1988
, “
A Micro-indentation Study of Superplasticity in Pb, Sn, and Sn-38 wt% Pb
,”
Acta Metall.
,
36
(
8
), pp.
2183
2192
.
56.
Hall
,
E. O.
,
1951
, “
The Deformation and Ageing of Mild Steel: III Discussion of Results
,”
Proc. Phys. Soc.
,
64
(
9
), pp.
747
.
57.
Petch
,
N. J.
,
1953
, “
The Cleavage Strength of Polycrystals
,”
J. Iron Steel Inst.
,
174
, pp.
25
28
.
58.
Adam
,
C. J.
, and
Swain
,
M. V.
,
2011
, “
The Effect of Friction on Indenter Force and Pile-Up in Numerical Simulations of Bone Nanoindentation
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
1554
1558
.
You do not currently have access to this content.