Abstract

Transition metal dichalcogenides (TMDs) offer superior properties over conventional materials in many areas such as in electronic devices. In recent years, TMDs have been shown to display a phase switching mechanism under the application of external mechanical strain, making them exciting candidates for phase change transistors. Molybdenum ditelluride (MoTe2) is one such material that has been engineered as a strain-based phase change transistor. In this work, we explore various aspects of the mechanical properties of this material by a suite of computational and experimental approaches. First, we present parameterization of an interatomic potential for modeling monolayer as well as multilayered MoTe2 films. For generating the empirical potential parameter set, we fit results from density functional theory calculations using a random search algorithm known as particle swarm optimization. The potential closely predicts structural properties, elastic constants, and vibrational frequencies of MoTe2 indicating a reliable fit. Our simulated mechanical response matches earlier larger scale experimental nanoindentation results with excellent prediction of fracture points. Simulation of uniaxial tensile deformation by molecular dynamics shows the complete non-linear stress-strain response up to failure. Mechanical behavior, including failure properties, exhibits directional anisotropy due to the variation of bond alignments with crystal orientation. Furthermore, we show the deterioration of mechanical properties with increasing temperature. Finally, we present computational and experimental evidence of an extended c-axis strain transfer length in MoTe2 compared to TMDs with smaller chalcogen atoms.

References

1.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), pp.
666
669
.
2.
Stoller
,
M. D.
,
Park
,
S.
,
Zhu
,
Y.
,
An
,
J.
, and
Ruoff
,
R. S.
,
2008
, “
Graphene-Based Ultracapacitors
,”
Nano. Lett.
,
8
(
10
), pp.
3498
3502
.
3.
Wang
,
Q. H.
,
Kalantar-Zadeh
,
K.
,
Kis
,
A.
,
Coleman
,
J. N.
, and
Strano
,
M. S.
,
2012
, “
Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides
,”
Nat. Nanotechnol.
,
7
(
11
), pp.
699
712
.
4.
Yang
,
H.
,
Kim
,
S. W.
,
Chhowalla
,
M.
, and
Lee
,
Y. H.
,
2017
, “
Structural and Quantum-State Phase Transitions in Van Der Waals Layered Materials
,”
Nat. Phys.
,
13
(
10
), pp.
931
937
.
5.
Savan
,
A.
,
Pflüger
,
E.
,
Voumard
,
P.
,
Schröer
,
A.
, and
Simmonds
,
M.
,
2000
, “
Modern Solid Lubrication: Recent Developments and Applications of MoS2
,”
Lubrication Sci.
,
12
(
2
), pp.
185
203
.
6.
Rapoport
,
L.
,
Leshchinsky
,
V.
,
Lvovsky
,
M.
,
Nepomnyashchy
,
O.
,
Volovik
,
Y.
, and
Tenne
,
R.
,
2002
, “
Friction and Wear of Powdered Composites Impregnated With WS2 Inorganic Fullerene-like Nanoparticles
,”
Wear
,
252
(
5-6
), pp.
518
527
.
7.
Bertolazzi
,
S.
,
Brivio
,
J.
, and
Kis
,
A.
,
2011
, “
Stretching and Breaking of Ultrathin MoS2
,”
ACS. Nano.
,
5
(
12
), pp.
9703
9709
.
8.
Nayak
,
A. P.
,
Bhattacharyya
,
S.
,
Zhu
,
J.
,
Liu
,
J.
,
Wu
,
X.
,
Pandey
,
T.
,
Jin
,
C.
,
Singh
,
A. K.
,
Akinwande
,
D.
, and
Lin
,
J. -F.
,
2014
, “
Pressure-Induced Semiconducting to Metallic Transition in Multilayered Molybdenum Disulphide
,”
Nat. Commun.
,
5
(
1
), pp.
1
9
.
9.
Desai
,
S. B.
,
Seol
,
G.
,
Kang
,
J. S.
,
Fang
,
H.
,
Battaglia
,
C.
,
Kapadia
,
R.
,
Ager
,
J. W.
,
Guo
,
J.
, and
Javey
,
A.
,
2014
, “
Strain-Induced Indirect to Direct Bandgap Transition in Multilayer WSe2
,”
Nano. Lett.
,
14
(
8
), pp.
4592
4597
.
10.
Tan
,
Y.
,
Luo
,
F.
,
Zhu
,
M.
,
Xu
,
X.
,
Ye
,
Y.
,
Li
,
B.
,
Wang
,
G.
,
Luo
,
W.
,
Zheng
,
X.
,
Wu
,
N.
,
Yu
,
Y.
,
Qin
,
S.
, and
Zhang
,
X.-A.
,
2018
, “
Controllable 2H-to-1T Phase Transition in Few-Layer MoTe2
,”
Nanoscale
,
10
(
42
), pp.
19964
19971
.
11.
Lezama
,
I. G.
,
Ubaldini
,
A.
,
Longobardi
,
M.
,
Giannini
,
E.
,
Renner
,
C.
,
Kuzmenko
,
A. B.
, and
Morpurgo
,
A. F.
,
2014
, “
Surface Transport and Band Gap Structure of Exfoliated 2H-MoTe2 Crystals
,”
2D. Mater.
,
1
(
2
), p.
021002
.
12.
Bie
,
Y.-Q.
,
Grosso
,
G.
,
Heuck
,
M.
,
Furchi
,
M. M.
,
Cao
,
Y.
,
Zheng
,
J.
,
Bunandar
,
D.
,
Navarro-Moratalla
,
E.
,
Zhou
,
L.
,
Efetov
,
D. K.
,
Taniguchi
,
T.
,
Watanabe
,
K.
,
Kong
,
J.
,
Englund
,
D.
, and
Jarillo-Herrero
,
P.
,
2017
, “
A MoTe 2-Based Light-Emitting Diode and Photodetector for Silicon Photonic Integrated Circuits
,”
Nat. Nanotechnol.
,
12
(
12
), pp.
1124
1129
.
13.
Panda
,
M. R.
,
Gangwar
,
R.
,
Muthuraj
,
D.
,
Sau
,
S.
,
Pandey
,
D.
,
Banerjee
,
A.
,
Chakrabarti
,
A.
,
Sagdeo
,
A.
,
Weyland
,
M.
,
Majumder
,
M.
,
Bao
,
Q.
, and
Mitra
,
S.
,
2020
, “
High Performance Lithium-Ion Batteries Using Layered 2H-MoTe2 As Anode
,”
Small
,
16
(
38
), p.
2002669
.
14.
Duerloo
,
K.-A. N.
,
Ong
,
M. T.
, and
Reed
,
E. J.
,
2012
, “
Intrinsic Piezoelectricity in Two-Dimensional Materials
,”
J. Phys. Chem. Lett.
,
3
(
19
), pp.
2871
2876
.
15.
Ruppert
,
C.
,
Aslan
,
O. B.
, and
Heinz
,
T. F.
,
2014
, “
Optical Properties and Band Gap of Single-and Few-Layer MoTe2 Crystals
,”
Nano. Lett.
,
14
(
11
), pp.
6231
6236
.
16.
Duerloo
,
K.-A. N.
,
Li
,
Y.
, and
Reed
,
E. J.
,
2014
, “
Structural Phase Transitions in Two-Dimensional Mo-and W-Dichalcogenide Monolayers
,”
Nat. Commun.
,
5
(
1
), pp.
1
9
.
17.
Cho
,
S.
,
Kim
,
S.
,
Kim
,
J. H.
,
Zhao
,
J.
,
Seok
,
J.
,
Keum
,
D. H.
,
Baik
,
J.
,
Choe
,
D.-H.
,
Chang
,
K. J.
,
Suenaga
,
K.
,
Kim
,
S. W.
,
Lee
,
Y. H.
, and
Yang
,
H.
,
2015
, “
Phase Patterning for Ohmic Homojunction Contact in MoTe2
,”
Science
,
349
(
6248
), pp.
625
628
.
18.
Nan
,
H.
,
Jiang
,
J.
,
Xiao
,
S.
,
Chen
,
Z.
,
Luo
,
Z.
,
Zhang
,
L.
,
Zhang
,
X.
,
Qi
,
H.
,
Gu
,
X.
,
Wang
,
X.
, and
Ni
,
Z.
,
2018
, “
Soft Hydrogen Plasma Induced Phase Transition in Monolayer and Few-Layer MoTe2
,”
Nanotechnology
,
30
(
3
), p.
034004
.
19.
Wang
,
Y.
,
Xiao
,
J.
,
Zhu
,
H.
,
Li
,
Y.
,
Alsaid
,
Y.
,
Fong
,
K. Y.
,
Zhou
,
Y.
,
Wang
,
S.
,
Shi
,
W.
,
Wang
,
Y.
,
Zettl
,
A.
,
Reed
,
E. J.
, and
Zhang
,
X.
,
2017
, “
Structural Phase Transition in Monolayer MoTe2 Driven by Electrostatic Doping
,”
Nature
,
550
(
7677
), pp.
487
491
.
20.
Rhodes
,
D.
,
Chenet
,
D. A.
,
Janicek
,
B. E.
,
Nyby
,
C.
,
Lin
,
Y.
,
Jin
,
W.
,
Edelberg
,
D.
,
Mannebach
,
E.
,
Finney
,
N.
,
Antony
,
A.
,
Schiros
,
T.
,
Klarr
,
T.
,
Mazzoni
,
A.
,
Chin
,
M.
,
Chiu
,
Y.-c.
,
Zheng
,
W.
,
Zhang
,
Q. R.
,
Ernst
,
F.
,
Dadap
,
J. I.
,
Tong
,
X.
,
Ma
,
J.
,
Lou
,
R.
,
Wang
,
S.
,
Qian
,
T.
,
Ding
,
H.
,
Osgood
,
R. M.
,
Paley
,
D. W.
,
Lindenberg
,
A. M.
,
Huang
,
P. Y.
,
Pasupathy
,
A. N.
,
Dubey
,
M.
,
Hone
,
J.
, and
Balicas
,
L.
,
2017
, “
Engineering the Structural and Electronic Phases of MoTe2 Through W Substitution
,”
Nano. Lett.
,
17
(
3
), pp.
1616
1622
.
21.
Ghasemi
,
A.
, and
Gao
,
W.
,
2020
, “
Atomistic Mechanism of Stress Modulated Phase Transition in Monolayer MoTe2
,”
Extreme Mechanics Letters
,
40
(Special Issue in Honor of Horacio D. Espinosa, recipient of the 2019 Prager Medal), p.
100946
.
22.
Song
,
S.
,
Keum
,
D. H.
,
Cho
,
S.
,
Perello
,
D.
,
Kim
,
Y.
, and
Lee
,
Y. H.
,
2016
, “
Room Temperature Semiconductor–Metal Transition of MoTe2 Thin Films Engineered by Strain
,”
Nano. Lett.
,
16
(
1
), pp.
188
193
.
23.
Diaz
,
H. C.
,
Chaghi
,
R.
,
Ma
,
Y.
, and
Batzill
,
M.
,
2015
, “
Molecular Beam Epitaxy of the Van Der Waals Heterostructure MoTe2 on MoS2: Phase, Thermal, and Chemical Stability
,”
2D. Mater.
,
2
(
4
), p.
044010
.
24.
Liu
,
K.
,
Yan
,
Q.
,
Chen
,
M.
,
Fan
,
W.
,
Sun
,
Y.
,
Suh
,
J.
,
Fu
,
D.
,
Lee
,
S.
,
Zhou
,
J.
,
Tongay
,
S.
,
Ji
,
J.
,
Neaton
,
J. B.
, and
Wu
,
J.
,
2014
, “
Elastic Properties of Chemical-Vapor-Deposited Monolayer MoS2, WS2, and Their Bilayer Heterostructures
,”
Nano. Lett.
,
14
(
9
), pp.
5097
5103
.
25.
Apte
,
A.
,
Kochat
,
V.
,
Rajak
,
P.
,
Krishnamoorthy
,
A.
,
Manimunda
,
P.
,
Hachtel
,
J. A.
,
Idrobo
,
J. C.
,
Syed Amanulla
,
S. A.
,
Vashishta
,
P.
,
Nakano
,
A.
,
Kalia
,
R. K.
,
Tiwary
,
C. S.
, and
Ajayan
,
P. M.
,
2018
, “
Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy
,”
ACS. Nano.
,
12
(
4
), pp.
3468
3476
.
26.
Hou
,
W.
,
Azizimanesh
,
A.
,
Sewaket
,
A.
,
Peña
,
T.
,
Watson
,
C.
,
Liu
,
M.
,
Askari
,
H.
, and
Wu
,
S. M.
,
2019
, “
Strain-Based Room-Temperature Non-Volatile MoTe 2 Ferroelectric Phase Change Transistor
,”
Nat. Nanotechnol.
,
14
(
7
), pp.
668
673
.
27.
Shao
,
S.
,
Zbib
,
H.
,
Mastorakos
,
I.
, and
Bahr
,
D.
,
2013
, “
Effect of Interfaces in the Work Hardening of Nanoscale Multilayer Metallic Composites During Nanoindentation: A Molecular Dynamics Investigation
,”
ASME J. Eng. Mater. Technol.
,
135
(
2
), p.
021001
.
28.
Jiang
,
J.-W.
, and
Park
,
H. S.
,
2014
, “
Mechanical Properties of MoS2/graphene Heterostructures
,”
Appl. Phys. Lett.
,
105
(
3
), p.
033108
.
29.
Ma
,
F.
,
Sun
,
Y.
,
Ma
,
D.
,
Xu
,
K.
, and
Chu
,
P. K.
,
2011
, “
Reversible Phase Transformation in Graphene Nano-Ribbons: Lattice Shearing Based Mechanism
,”
Acta. Mater.
,
59
(
17
), pp.
6783
6789
.
30.
Stillinger
,
F. H.
, and
Weber
,
T. A.
,
1985
, “
Computer Simulation of Local Order in Condensed Phases of Silicon
,”
Phys. Rev. B
,
31
(
8
), p.
5262
.
31.
Liang
,
T.
,
Phillpot
,
S. R.
, and
Sinnott
,
S. B.
,
2009
, “
Parametrization of a Reactive Many-Body Potential for Mo–S Systems
,”
Phys. Rev. B
,
79
(
24
), p.
245110
.
32.
Tersoff
,
J.
,
1989
, “
Modeling Solid-state Chemistry: Interatomic Potentials for Multicomponent Systems
,”
Phys. Rev. B
,
39
(
8
), p.
5566
.
33.
Hossain
,
M.
,
Hao
,
T.
, and
Silverman
,
B.
,
2018
, “
Stillinger–Weber Potential for Elastic and Fracture Properties in Graphene and Carbon Nanotubes
,”
J. Phys.: Condens. Matter.
,
30
(
5
), p.
055901
.
34.
Dawson
,
W.
, and
Bullett
,
D.
,
1987
, “
Electronic Structure and Crystallography of MoTe2 and WTe2
,”
J. Phys. C: Solid State Phys.
,
20
(
36
), p.
6159
.
35.
Kresse
,
G.
, and
Hafner
,
J.
,
1993
, “
Ab Initio Molecular Dynamics for Liquid Metals
,”
Phys. Rev. B
,
47
(
1
), pp.
558
561
.
36.
Kresse
,
G.
, and
Hafner
,
J.
,
1994
, “
Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium
,”
Phys. Rev. B
,
49
(
20
), pp.
14251
14269
.
37.
Kresse
,
G.
, and
Furthmüller
,
J.
,
1996
, “
Efficiency of Ab Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set
,”
Comput. Mater. Sci.
,
6
, pp.
15
50
.
38.
Kresse
,
G.
, and
Furthmüller
,
J.
,
1996
, “
Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set
,”
Phys. Rev. B
,
54
, pp.
11169
11186
.
39.
Blöchl
,
P.
,
1994
, “
Projector Augmented-Wave Method
,”
Phys. Rev. B
,
50
(
24
), pp.
17953
17979
.
40.
Kresse
,
G.
, and
Joubert
,
D.
,
1999
, “
From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method
,”
Phys. Rev. B
,
59
, pp.
1758
1775
.
41.
Klime
,
J.
,
Bowler
,
D. R.
, and
Michaelides
,
A.
,
2011
, “
Van Der Waals Density Functionals Applied to Solids
,”
Phys. Rev. B - Condens. Matter Mater. Phys.
,
83
(
19
), pp.
1
13
.
42.
Togo
,
A.
, and
Tanaka
,
I.
,
2015
, “
First Principles Phonon Calculations in Materials Science
,”
Scr. Mater.
,
108
, pp.
1
5
.
43.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
44.
Hoover
,
W. G.
,
1985
, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A.
,
31
(
3
), p.
1695
.
45.
Stewart
,
J. A.
, and
Spearot
,
D.
,
2013
, “
Atomistic Simulations of Nanoindentation on the Basal Plane of Crystalline Molybdenum Disulfide (MoS2)
,”
Modell. Simul. Mater. Sci. Eng.
,
21
(
4
), p.
045003
.
46.
Peña
,
T.
,
Chowdhury
,
S. A.
,
Azizimanesh
,
A.
,
Sewaket
,
A.
,
Askari
,
H.
, and
Wu
,
S. M.
,
2020
, “
Strain Engineering 2D MoS2 With Thin Film Stress Capping Layers
”. arXiv preprint arXiv:2009.10626.
47.
Stukowski
,
A.
,
2009
, “
Visualization and Analysis of Atomistic Simulation Data With Ovito–the Open Visualization Tool
,”
Model. Simul. Mater. Sci. Eng
,
18
, p.
015012
.
48.
Shargh
,
A. K.
, and
Abdolrahim
,
N.
,
2019
, “
Molecular Dynamics Simulation of Structural Changes in Single Crystalline Silicon Nitride Nanomembrane
,”
Ceram. Int.
,
45
, pp.
23070
23077
.
49.
Xiong
,
S.
, and
Cao
,
G.
,
2015
, “
Molecular Dynamics Simulations of Mechanical Properties of Monolayer MoS2
,”
Nanotechnology
,
26
(
18
), p.
185705
.
50.
Gale
,
J. D.
,
1997
, “
GULP: A Computer Program for the Symmetry-Adapted Simulation of Solids
,”
J. Chem. Soc., Faraday. Trans.
,
93
(
4
), pp.
629
637
.
51.
Kandemir
,
A.
,
Yapicioglu
,
H.
,
Kinaci
,
A.
,
Çağın
,
T.
, and
Sevik
,
C.
,
2016
, “
Thermal Transport Properties of MoS2 and MoSe2 Monolayers
,”
Nanotechnology
,
27
(
5
), p.
055703
.
52.
Mobaraki
,
A.
,
Kandemir
,
A.
,
Yapicioglu
,
H.
,
Gülseren
,
O.
, and
Sevik
,
C.
,
2018
, “
Validation of Inter-Atomic Potential for WS2 and WSe2 Crystals Through Assessment of Thermal Transport Properties
,”
Comput. Mater. Sci.
,
144
, pp.
92
98
.
53.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN’95-International Conference on Neural Networks
, Vol.
4
,
IEEE
, pp.
1942
1948
.
54.
Sun
,
Y.
,
Pan
,
J.
,
Zhang
,
Z.
,
Zhang
,
K.
,
Liang
,
J.
,
Wang
,
W.
,
Yuan
,
Z.
,
Hao
,
Y.
,
Wang
,
B.
,
Wang
,
J.
,
Wu
,
Y.
,
Zheng
,
J.
,
Jiao
,
L.
,
Zhou
,
S.
,
Liu
,
K.
,
Cheng
,
C.
,
Duan
,
W.
,
Xu
,
Y.
,
Yan
,
Q.
, and
Liu
,
K.
,
2019
, “
Elastic Properties and Fracture Behaviors of Biaxially Deformed, Polymorphic MoTe2
,”
Nano. Lett.
,
19
(
2
), pp.
761
769
.
55.
Li
,
J.
,
Medhekar
,
N. V.
, and
Shenoy
,
V. B.
,
2013
, “
Bonding Charge Density and Ultimate Strength of Monolayer Transition Metal Dichalcogenides
,”
J. Phys. Chem. C
,
117
(
30
), pp.
15842
15848
.
56.
Mortazavi
,
B.
,
Berdiyorov
,
G. R.
,
Makaremi
,
M.
, and
Rabczuk
,
T.
,
2018
, “
Mechanical Responses of Two-Dimensional MoTe2; Pristine 2H, 1T and 1T and 1T/2H Heterostructure
,”
Extreme Mech. Lett.
,
20
, pp.
65
72
.
57.
Xiong
,
Q.-l.
,
Kitamura
,
T.
, and
Li
,
Z.-h.
,
2017
, “
Crystal Orientation-Dependent Mechanical Property and Structural Phase Transition of Monolayer Molybdenum Disulfide
,”
J. Appl. Phys.
,
122
(
13
), p.
135105
.
58.
Jiang
,
H.
,
Huang
,
Y.
, and
Hwang
,
K.
,
2005
, “
A Finite-Temperature Continuum Theory Based on Interatomic Potentials: Nanomaterials and Nanomechanics
,”
ASME J. Eng. Mater. Technol.
,
127
(
4
), pp.
408
416
.
59.
Pidin
,
S.
,
Mori
,
T.
,
Inoue
,
K.
,
Fukuta
,
S.
,
Itoh
,
N.
,
Mutoh
,
E.
,
Ohkoshi
,
K.
,
Nakamura
,
R.
,
Kobayashi
,
K.
,
Kawamura
,
K.
,
Saiki
,
T.
,
Fukuyama
,
S.
,
Satoh
,
S.
,
Kase
,
M.
, and
Hashimoto
,
K.
,
2004
, “
A Novel Strain Enhanced CMOS Architecture Using Selectively Deposited High Tensile and High Compressive Silicon Nitride Films
,”
IEDM Technical Digest. IEEE International Electron Devices Meeting
,
IEEE
, pp.
213
216
.
60.
Kumar
,
H.
,
Dong
,
L.
, and
Shenoy
,
V. B.
,
2016
, “
Limits of Coherency and Strain Transfer in Flexible 2D Van Der Waals Heterostructures: Formation of Strain Solitons and Interlayer Debonding
,”
Sci. Rep.
,
6
(
1
), pp.
1
8
.
61.
Levita
,
G.
,
Molinari
,
E.
,
Polcar
,
T.
, and
Righi
,
M. C.
,
2015
, “
First-Principles Comparative Study on the Interlayer Adhesion and Shear Strength of Transition-Metal Dichalcogenides and Graphene
,”
Phys. Rev. B
,
92
(
8
), p.
085434
.
62.
Lloyd
,
D.
,
Liu
,
X.
,
Christopher
,
J. W.
,
Cantley
,
L.
,
Wadehra
,
A.
,
Kim
,
B. L.
,
Goldberg
,
B. B.
,
Swan
,
A. K.
, and
Bunch
,
J. S.
,
2016
, “
Band Gap Engineering With Ultralarge Biaxial Strains in Suspended Monolayer MoS2
,”
Nano. Lett.
,
16
(
9
), pp.
5836
5841
.
63.
Nikam
,
R. D.
,
Sonawane
,
P. A.
,
Sankar
,
R.
, and
Chen
,
Y. -T.
,
2017
, “
Epitaxial Growth of Vertically Stacked P-MoS2/n-MoS2 Heterostructures by Chemical Vapor Deposition for Light Emitting Devices
,”
Nano Energy
,
32
, pp.
454
462
.
64.
Gong
,
L.
,
Young
,
R. J.
,
Kinloch
,
I. A.
,
Riaz
,
I.
,
Jalil
,
R.
, and
Novoselov
,
K. S.
,
2012
, “
Optimizing the Reinforcement of Polymer-Based Nanocomposites by Graphene
,”
ACS.Nano.
,
6
(
3
), pp.
2086
2095
.
65.
Rice
,
C.
,
Young
,
R.
,
Zan
,
R.
,
Bangert
,
U.
,
Wolverson
,
D.
,
Georgiou
,
T.
,
Jalil
,
R.
, and
Novoselov
,
K.
,
2013
, “
Raman-Scattering Measurements and First-Principles Calculations of Strain-Induced Phonon Shifts in Monolayer MoS2
,”
Phys. Rev. B
,
87
(
8
), p.
081307
.
66.
Shafique
,
A.
, and
Shin
,
Y.-H.
,
2017
, “
Strain Engineering of Phonon Thermal Transport Properties in Monolayer 2H-MoTe2
,”
Phys. Chem. Chem. Phys.
,
19
(
47
), pp.
32072
32078
.
67.
Woods
,
C. R.
,
2016
, “
Investigations Into the Interfacial Interaction of Graphene With Hexagonal Boron Nitride
,”
The University of Manchester
,
United Kingdom
.
68.
Kumar
,
H.
,
Er
,
D.
,
Dong
,
L.
,
Li
,
J.
, and
Shenoy
,
V. B.
,
2015
, “
Elastic Deformations in 2D Van Der Waals Heterostructures and Their Impact on Optoelectronic Properties: Predictions From a Multiscale Computational Approach
,”
Sci. Rep.
,
5
(
1
), pp.
1
11
.
69.
Naik
,
M. H.
,
Maity
,
I.
,
Maiti
,
P. K.
, and
Jain
,
M.
,
2019
, “
Kolmogorov–crespi Potential for Multilayer Transition-Metal Dichalcogenides: Capturing Structural Transformations in Moiré Superlattices
,”
J. Phys. Chem. C
,
123
(
15
), pp.
9770
9778
.
70.
Alden
,
J. S.
,
Tsen
,
A. W.
,
Huang
,
P. Y.
,
Hovden
,
R.
,
Brown
,
L.
,
Park
,
J.
,
Muller
,
D. A.
, and
McEuen
,
P. L.
,
2013
, “
Strain Solitons and Topological Defects in Bilayer Graphene
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
28
), pp.
11256
11260
.
71.
Woods
,
C.
,
Britnell
,
L.
,
Eckmann
,
A.
,
Ma
,
R.
,
Lu
,
J.
,
Guo
,
H.
,
Lin
,
X.
,
Yu
,
G.
,
Cao
,
Y.
,
Gorbachev
,
R.
,
Kretinin
,
A.
,
Park
,
J.
,
Ponomarenko
,
L.
,
Katsnelson
,
M.
,
Gornostyrev
,
Y. N.
,
Watanabe
,
K.
,
Taniguchi
,
T.
,
Casiraghi
,
C.
,
Gao
,
H.-J.
,
Geim
,
A.
, and
Novoselov
,
K.
,
2014
, “
Commensurate–incommensurate Transition in Graphene on Hexagonal Boron Nitride
,”
Nat. Phys.
,
10
(
6
), pp.
451
456
.
You do not currently have access to this content.