Abstract

The diffusion of hydrogen in metals is of interest due to the deleterious influence of hydrogen on material ductility and fracture resistance. It is becoming increasingly clear that hydrogen transport couples significantly with dislocation activity. In this work, we use a coupled diffusion-crystal plasticity model to incorporate hydrogen transport associated with dislocation sweeping and pipe diffusion in addition to standard lattice diffusion. Moreover, we consider generation of vacancies via plastic deformation and stabilization of vacancies via trapping of hydrogen. The proposed hydrogen transport model is implemented in a physically based crystal viscoplasticity framework to model the interaction of dislocation substructure and hydrogen migration. In this study, focus is placed on hydrogen transport and trapping within the intense deformation field of a crack tip plastic zone. We discuss the implications of the model results in terms of constitutive relations that incorporate hydrogen effects on crack tip field behavior and enable exploration of hydrogen embrittlement mechanisms.

References

1.
Johnson
,
W. H.
,
1875
, “
On Some Remarkable Changes Produced in Iron and Steel by the Action of Hydrogen and Acids
,”
Nature
,
11
(
281
), pp.
393
.
2.
Myers
,
S. M.
,
Baskes
,
M.
,
Birnbaum
,
H.
,
Corbett
,
J. W.
,
DeLeo
,
G.
,
Estreicher
,
S.
,
Haller
,
E. E.
,
Jena
,
P.
,
Johnson
,
N. M.
, and
Kirchheim
,
R.
,
1992
, “
Hydrogen Interactions with Defects in Crystalline Solids
,”
Rev. Mod. Phys.
,
64
(
2
), pp.
559
617
.
3.
Barthélémy
,
H.
,
2012
, “
Hydrogen Storage–Industrial Prospectives
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
17364
17372
.
4.
Gangloff
,
R. P.
, and
Somerday
,
B. P.
,
2012
,
Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, Its Characterisation and Effects on Particular Alloy Classes
,
Elsevier
,
New York
.
5.
Popov
,
K.
, and
Nechai
,
E.
,
1967
, “
Theory of Hydrogen Embrittlement of Metals
,”
Soviet Materials Science: A Transl. of Fiziko-khimicheskaya mekhanika materialov/Academy of Sciences of the Ukrainian SSR
,
3
(
6
), pp.
459
473
.
6.
Ghermaoui
,
I.
,
Oudriss
,
A.
,
Metsue
,
A.
,
Milet
,
R.
,
Madani
,
K.
, and
Feaugas
,
X.
,
2019
, “
Multiscale Analysis of Hydrogen-Induced Softening in FCC Nickel Single Crystals Oriented for Multiple-Slips: Elastic Screening Effect
,”
Sci. Rep.
,
9
(
1
), pp.
1
10
.
7.
Beacham
,
C.
,
1972
, “
A New Model for Hydrogen-Assisted Cracking (Hydrogen. Embrittlement)
,”
Metall. Trans.
,
3
, pp.
437
451
.
8.
Birnbaum
,
H. K.
, and
Sofronis
,
P.
,
1994
, “
Hydrogen-Enhanced Localized Plasticity—A Mechanism for Hydrogen-Related Fracture
,”
Mater. Sci. Eng. A
,
176
(
1–2
), pp.
191
202
.
9.
Lynch
,
S.
,
1979
, “
Hydrogen Embrittlement and Liquid-Metal Embrittlement in Nickel Single Crystals
,”
Scr. Metall.
,
13
(
11
), pp.
1051
1056
.
10.
Lynch
,
S.
,
1988
, “
Environmentally Assisted Cracking: Overview of Evidence for an Adsorption-Induced Localised-Slip Process
,”
Acta Metall.
,
36
(
10
), pp.
2639
2661
.
11.
Lynch
,
S.
,
1989
, “
Metallographic Contributions to Understanding Mechanisms of Environmentally Assisted Cracking
,”
Metallography
,
23
(
2
), pp.
147
171
.
12.
Petch
,
N.
, and
Stables
,
P.
,
1952
, “
Delayed Fracture of Metals Under Static Load
,”
Nature
,
169
(
4307
), pp.
842
843
.
13.
Pfeil
,
L. B.
,
1926
, “
The Effect of Occluded Hydrogen on the Tensile Strength of Iron
,”
Proc. R. Soc. Lond. A.
,
112
(
760
), pp.
182
195
.
14.
Troiano
,
A.
,
1973
, “
General Keynote Lecture, Hydrogen in Metals
,”
Proc. Int. Conf. on the Effects of Hydrogen on Materials Properties and Selection and Structural Design
,
Champion, PA
,
Sept. 23–27, 1973
.
15.
Hatano
,
M.
,
Fujinami
,
M.
,
Arai
,
K.
,
Fujii
,
H.
, and
Nagumo
,
M.
,
2014
, “
Hydrogen Embrittlement of Austenitic Stainless Steels Revealed by Deformation Microstructures and Strain-Induced Creation of Vacancies
,”
Acta Mater.
,
67
, pp.
342
353
.
16.
Nagumo
,
M.
,
2004
, “
Hydrogen Related Failure of Steels—A New Aspect
,”
Mater. Sci. Technol.
,
20
(
8
), pp.
940
950
.
17.
Sofronis
,
P.
, and
McMeeking
,
R. M.
,
1989
, “
Numerical Analysis of Hydrogen Transport Near a Blunting Crack Tip
,”
J. Mech. Phys. Solids
,
37
(
3
), pp.
317
350
.
18.
Charles
,
Y.
,
Nguyen
,
H. T.
, and
Gaspérini
,
M.
,
2017
, “
Comparison of Hydrogen Transport Through Pre-Deformed Synthetic Polycrystals and Homogeneous Samples by Finite Element Analysis
,”
Int. J. Hydrogen Energy
,
42
(
31
), pp.
20336
20350
.
19.
Hassan
,
H. U.
,
Govind
,
K.
, and
Hartmaier
,
A.
,
2019
, “
Micromechanical Modelling of Coupled Crystal Plasticity and Hydrogen Diffusion
,”
Philos. Mag.
,
99
(
1
), pp.
92
115
.
20.
Hüter
,
C.
,
Shanthraj
,
P.
,
McEniry
,
E.
,
Spatschek
,
R.
,
Hickel
,
T.
,
Tehranchi
,
A.
,
Guo
,
X.
, and
Roters
,
F.
,
2018
, “
Multiscale Modelling of Hydrogen Transport and Segregation in Polycrystalline Steels
,”
Metals
,
8
(
6
), p.
430
.
21.
Ilin
,
D. N.
,
Saintier
,
N.
,
Olive
,
J.-M.
,
Abgrall
,
R.
, and
Aubert
,
I.
,
2014
, “
Simulation of Hydrogen Diffusion Affected by Stress-Strain Heterogeneity in Polycrystalline Stainless Steel
,”
Int. J. Hydrogen Energy
,
39
(
5
), pp.
2418
2422
.
22.
Miresmaeili
,
R.
,
Saintier
,
N.
,
Notsu
,
H.
,
Olive
,
J.-M.
, and
Kanayama
,
H.
,
2010
, “
One-Way Coupled Crystal Plasticity-Hydrogen Diffusion Simulation on Artificial Microstructure
,”
J. Comput. Sci. Technol.
,
4
(
2
), pp.
105
120
.
23.
Saintier
,
N.
,
Awane
,
T.
,
Olive
,
J.-M.
,
Matsuoka
,
S.
, and
Murakami
,
Y.
,
2011
, “
Analyses of Hydrogen Distribution Around Fatigue Crack on Type 304 Stainless Steel Using Secondary Ion Mass Spectrometry
,”
Int. J. Hydrogen Energy
,
36
(
14
), pp.
8630
8640
.
24.
Dadfarnia
,
M.
,
Martin
,
M. L.
,
Nagao
,
A.
,
Sofronis
,
P.
, and
Robertson
,
I. M.
,
2015
, “
Modeling Hydrogen Transport by Dislocations
,”
J. Mech. Phys. Solids
,
78
, pp.
511
525
.
25.
Murakami
,
Y.
,
Kanezaki
,
T.
,
Mine
,
Y.
, and
Matsuoka
,
S.
,
2008
, “
Hydrogen Embrittlement Mechanism in Fatigue of Austenitic Stainless Steels
,”
Metall. Mater. Trans. A
,
39
(
6
), pp.
1327
1339
.
26.
Hashimoto
,
M.
, and
Latanision
,
R.
,
1988
, “
The Role of Dislocations During Transport of Hydrogen in Hydrogen Embrittlement of Iron
,”
Metall. Trans. A
,
19
(
11
), pp.
2799
2803
.
27.
Cortes
,
R.
,
Valiente
,
A.
,
Ruiz
,
J.
,
Caballero
,
L.
, and
Toribio
,
J.
,
1997
, “
Finite-Element Modeling of Stress-Assisted Hydrogen Diffusion in 316L Stainless Steel
,”
Mater. Sci.
,
33
(
4
), pp.
491
503
.
28.
Van Leeuwen
,
H.
,
1974
, “
The Kinetics of Hydrogen Embrittlement: A Quantitative Diffusion Model
,”
Eng. Fract. Mech.
,
6
(
1
), pp.
141
161
.
29.
Love
,
G.
,
1964
, “
Dislocation Pipe Diffusion
,”
Acta Metall.
,
12
(
6
), pp.
731
737
.
30.
San Marchi
,
C.
,
Somerday
,
B. P.
, and
Robinson
,
S. L.
,
2007
, “
Permeability, Solubility and Diffusivity of Hydrogen Isotopes in Stainless Steels at High Gas Pressures
,”
Int. J. Hydrogen Energy
,
32
(
1
), pp.
100
116
.
31.
Nair
,
S.
,
Jensen
,
R.
, and
Tien
,
J.
,
1983
, “
Kinetic Enrichment of Hydrogen at Interfaces and Voids by Dislocation Sweep-in of Hydrogen
,”
Metall. Trans. A
,
14
(
2
), pp.
385
393
.
32.
Schuster
,
G.
, and
Altstetter
,
C.
,
1983
, “
Fatigue of Stainless Steel in Hydrogen
,”
Metall. Trans. A
,
14
(
10
), pp.
2085
2090
.
33.
Wang
,
Y.
,
Connétable
,
D.
, and
Tanguy
,
D.
,
2015
, “
Hydrogen Influence on Diffusion in Nickel From First-Principles Calculations
,”
Phys. Rev. B
,
91
(
9
), p.
094106
.
34.
Wen
,
M.
,
Fukuyama
,
S.
, and
Yokogawa
,
K.
,
2004
, “
Hydrogen-Affected Cross-Slip Process in FCC Nickel
,”
Phys. Rev. B
,
69
(
17
), p.
174108
.
35.
Angelo
,
J. E.
,
Moody
,
N. R.
, and
Baskes
,
M. I.
,
1995
, “
Trapping of Hydrogen to Lattice Defects in Nickel
,”
Modell. Simul. Mater. Sci. Eng.
,
3
(
3
), pp.
289
307
.
36.
Tanguy
,
D.
,
Wang
,
Y.
, and
Connétable
,
D.
,
2014
, “
Stability of Vacancy-Hydrogen Clusters in Nickel From First-Principles Calculations
,”
Acta Mater.
,
78
, pp.
135
143
.
37.
Myers
,
S.
,
Nordlander
,
P.
,
Besenbacher
,
F.
, and
Nørskov
,
J.
,
1986
, “
Theoretical Examination of the Trapping of Ion-Implanted Hydrogen in Metals
,”
Phys. Rev. B
,
33
(
2
), pp.
854
863
.
38.
Hirth
,
J.
, and
Lothe
,
J.
,
1982
,
Theory of Dislocations
,
Wiley
,
New York
.
39.
Li
,
S.
,
Li
,
Y.
,
Lo
,
Y.-C.
,
Neeraj
,
T.
,
Srinivasan
,
R.
,
Ding
,
X.
,
Sun
,
J.
,
Qi
,
L.
,
Gumbsch
,
P.
, and
Li
,
J.
,
2015
, “
The Interaction of Dislocations and Hydrogen-Vacancy Complexes and Its Importance for Deformation-Induced Proto Nano-Voids Formation in α-Fe
,”
Int. J. Plast.
,
74
, pp.
175
191
.
40.
Kays
,
W. M.
,
2012
,
Convective Heat and Mass Transfer
,
Tata McGraw-Hill Education
,
New York
.
41.
Hart
,
E.
,
Hoffman
,
R.
, and
Turnbull
,
D.
,
1957
, “
Self-Diffusion in Dilute Binary Solid Solutions—II
,”
Acta Metall.
,
5
(
2
), pp.
74
76
.
42.
Chen
,
Y.
, and
Schuh
,
C. A.
,
2007
, “
Geometric Considerations for Diffusion in Polycrystalline Solids
,”
J. Appl. Phys.
,
101
(
6
), p.
063524
.
43.
Frank
,
F.
,
1950
,
Report of the Symposium on the Plastic Deformation of Crystalline Solids
,
Carnegie Institute of Technology
,
Pittsburgh
, p.
150
.
44.
McLellan
,
R. B.
,
1979
, “
Thermodynamics and Diffusion Behavior of Interstitial Solute Atoms in Non-Perfect Solvent Crystals
,”
Acta Metall.
,
27
(
10
), pp.
1655
1663
.
45.
Tien
,
J.
,
Thompson
,
A. W.
,
Bernstein
,
I.
, and
Richards
,
R. J.
,
1976
, “
Hydrogen Transport by Dislocations
,”
Metall. Trans. A
,
7
(
6
), pp.
821
829
.
46.
Fukai
,
Y.
,
2003
, “
Formation of Superabundant Vacancies in M–H Alloys and Some of Its Consequences: A Review
,”
J. Alloys Compd.
,
356–357
, pp.
263
269
.
47.
Kocks
,
U. F.
,
Argon
,
A. S.
, and
Ashby
,
M. F.
,
1975
, “
Thermodynamics and Kinetics of Slip
,”
Prog. Mater. Sci.
,
19
, pp.
1
281
.
48.
Mughrabi
,
H.
,
1979
, “
Microscopic Mechanisms of Metal Fatigue
,” Proceedings of the 5th International Conference on Strength of Metals and Alloys, Aachen, Germany, Vol. 3, pp.
1615
1638
.
49.
Louthan
,
M.
, Jr
,
Donovan
,
J.
, and
Caskey
,
G.
, Jr
,
1975
, “
Hydrogen Diffusion and Trapping in Nickel
,”
Acta Metall.
,
23
(
6
), pp.
745
749
.
50.
Lee
,
S.-M.
, and
Lee
,
J.-Y.
,
1986
, “
The Trapping and Transport Phenomena of Hydrogen in Nickel
,”
Metall. Trans. A
,
17
(
2
), pp.
181
187
.
51.
Chen
,
D.
,
2018
,
Personal Communication
.
52.
Liang
,
Y.
,
Ahn
,
D.
,
Sofronis
,
P.
,
Dodds
,
R.
, Jr
, and
Bammann
,
D.
,
2008
, “
Effect of Hydrogen Trapping on Void Growth and Coalescence in Metals and Alloys
,”
Mech. Mater.
,
40
(
3
), pp.
115
132
.
53.
Zheng
,
H.
,
Rao
,
B.
,
Khanna
,
S.
, and
Jena
,
P.
,
1997
, “
Electronic Structure and Binding Energies of Hydrogen-Decorated Vacancies in Ni
,”
Phys. Rev. B
,
55
(
7
), pp.
4174
4181
.
54.
Myers
,
S.
,
Richards
,
P.
,
Wampler
,
W.
, and
Besenbacher
,
F.
,
1989
, “
Ion-Beam Studies of Hydrogen-Metal Interactions
,”
J. Nucl. Mater.
,
165
(
1
), pp.
9
64
.
55.
Castelluccio
,
G. M.
, and
McDowell
,
D. L.
,
2017
, “
Mesoscale Cyclic Crystal Plasticity With Dislocation Substructures
,”
Int. J. Plast.
,
98
, pp.
1
26
.
56.
Yagodzinskyy
,
Y.
,
Saukkonen
,
T.
,
Kilpeläinen
,
S.
,
Tuomisto
,
F.
, and
Hänninen
,
H.
,
2010
, “
Effect of Hydrogen on Plastic Strain Localization in Single Crystals of Austenitic Stainless Steel
,”
Scr. Mater.
,
62
(
3
), pp.
155
158
.
57.
Polák
,
J.
, and
Man
,
J.
,
2014
, “
Fatigue Crack Initiation—The Role of Point Defects
,”
Int. J. Fatigue
,
65
, pp.
18
27
.
58.
Polák
,
J.
, and
Sauzay
,
M.
,
2009
, “
Growth of Extrusions in Localized Cyclic Plastic Straining
,”
Mater. Sci. Eng. A
,
500
(
1–2
), pp.
122
129
.
59.
Differt
,
K.
, and
Essmann
,
U.
,
1993
, “
Dynamical Model of the Wall Structure in Persistent Slip Bands of Fatigued Metals I. Dynamical Model of Edge Dislocation Walls
,”
Materials Science and Engineering: A
,
164
(
1–2
), pp.
295
299
.
60.
Essmann
,
U.
,
Gösele
,
U.
, and
Mughrabi
,
H.
,
1981
, “
A Model of Extrusions and Intrusions in Fatigued Metals I. Point-Defect Production and the Growth of Extrusions
,”
Philos. Mag. A
,
44
(
2
), pp.
405
426
.
61.
Essmann
,
U.
, and
Mughrabi
,
H.
,
1979
, “
Annihilation of Dislocations During Tensile and Cyclic Deformation and Limits of Dislocation Densities
,”
Philos. Mag. A
,
40
(
6
), pp.
731
756
.
62.
Davoudi
,
K. M.
, and
Vlassak
,
J. J.
,
2018
, “
Dislocation Evolution During Plastic Deformation: Equations vs. Discrete Dislocation Dynamics Study
,”
J. Appl. Phys.
,
123
(
8
), p.
085302
.
63.
Schafler
,
E.
,
Steiner
,
G.
,
Korznikova
,
E.
,
Kerber
,
M.
, and
Zehetbauer
,
M.
,
2005
, “
Lattice Defect Investigation of ECAP-Cu by Means of X-Ray Line Profile Analysis, Calorimetry and Electrical Resistometry
,”
Mater. Sci. Eng. A
,
410–411
, pp.
169
173
.
64.
Ungár
,
T.
,
2006
, “
Subgrain Size-Distributions, Dislocation Structures, Stacking-and Twin Faults and Vacancy Concentrations in SPD Materials Determined
,”
Materials Science Forum
,
503–504
, pp.
133–140
.
65.
Xu
,
S.
,
Xiong
,
L.
,
Chen
,
Y.
, and
McDowell
,
D. L.
,
2016
, “
An Analysis of Key Characteristics of the Frank-Read Source Process in FCC Metals
,”
J. Mech. Phys. Solids
,
96
, pp.
460
476
.
66.
ABAQUS, F.
,
2009
,
software V6. 9
,
Simulia Corp.
,
Providence, RI
, Simulia, Inc.
67.
Gobbi
,
G.
,
Colombo
,
C.
,
Miccoli
,
S.
, and
Vergani
,
L.
,
2019
, “
A Fully Coupled Implementation of Hydrogen Embrittlement in FE Analysis
,”
Adv. Eng. Software
,
135
, p.
102673
.
68.
Irwin
,
G.
,
1968
, “
Linear Fracture Mechanics, Fracture Transition, and Fracture Control
,”
Eng. Fract. Mech.
,
1
(
2
), pp.
241
257
.
69.
Anderson
,
T. L.
,
2017
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
70.
Ebisuzaki
,
Y.
,
Kass
,
W.
, and
O'keeffe
,
M.
,
1967
, “
Diffusion and Solubility of Hydrogen in Single Crystals of Nickel and Nickel—Vanadium Alloy
,”
J. Chem. Phys.
,
46
(
4
), pp.
1378
1381
.
71.
Rice
,
J. R.
,
1987
, “
Tensile Crack Tip Fields in Elastic-Ideally Plastic Crystals
,”
Mech. Mater.
,
6
(
4
), pp.
317
335
.
72.
Bitzek
,
E.
, and
Gumbsch
,
P.
,
2013
, “
Mechanisms of Dislocation Multiplication at Crack Tips
,”
Acta Mater.
,
61
(
4
), pp.
1394
1403
.
73.
Alcalá
,
J.
,
Očenášek
,
J.
,
Nowag
,
K.
,
Esqué-de los Ojos
,
D.
,
Ghisleni
,
R.
, and
Michler
,
J.
,
2015
, “
Strain Hardening and Dislocation Avalanches in Micrometer-Sized Dimensions
,”
Acta Mater.
,
91
, pp.
255
266
.
74.
Kiener
,
D.
, and
Minor
,
A.
,
2011
, “
Source Truncation and Exhaustion: Insights From Quantitative In Situ TEM Tensile Testing
,”
Nano Lett.
,
11
(
9
), pp.
3816
3820
.
75.
Sun
,
S.
,
Shiozawa
,
K.
,
Gu
,
J.
, and
Chen
,
N.
,
1995
, “
Investigation of Deformation Field and Hydrogen Partition Around Crack Tip in FCC Single Crystal
,”
Metall. Mater. Trans. A
,
26
(
3
), pp.
731
739
.
76.
Doshida
,
T.
, and
Takai
,
K.
,
2014
, “
Dependence of Hydrogen-Induced Lattice Defects and Hydrogen Embrittlement of Cold-Drawn Pearlitic Steels on Hydrogen Trap State, Temperature, Strain Rate and Hydrogen Content
,”
Acta Mater.
,
79
, pp.
93
107
.
77.
Ritchie
,
R. O.
,
1999
, “
Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids
,”
Int. J. Fract.
,
100
(
1
), pp.
55
83
.
78.
Taggart
,
R.
,
Wahi
,
K.
, and
Beeuwkes
,
R.
,
1976
,
Properties Related to Fracture Toughness
,
V.
Weiss
and
W.
Warke
, eds.,
ASTM International
,
West Conshohocken, PA
.
79.
Farkas
,
D.
,
Duranduru
,
M.
,
Curtin
,
W.
, and
Ribbens
,
C.
,
2001
, “
Multiple-Dislocation Emission From the Crack Tip in the Ductile Fracture of Al
,”
Philos. Mag. A
,
81
(
5
), pp.
1241
1255
.
80.
Puttick
,
K.
,
1959
, “
Ductile Fracture in Metals
,”
Philos. Mag.
,
4
(
44
), pp.
964
969
.
81.
Castelluccio
,
G. M.
,
Geller
,
C. B.
, and
McDowell
,
D. L.
,
2018
, “
A Rationale for Modeling Hydrogen Effects on Plastic Deformation Across Scales in FCC Metals
,”
Int. J. Plast.
,
111
, pp.
72
84
.
82.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, A
,
241
(
1226
), pp.
376
396
.
83.
Mura
,
T.
,
2013
,
Micromechanics of Defects in Solids
,
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
84.
Sauzay
,
M.
, and
Kubin
,
L. P.
,
2011
, “
Scaling Laws for Dislocation Microstructures in Monotonic and Cyclic Deformation of FCC Metals
,”
Prog. Mater. Sci.
,
56
(
6
), pp.
725
784
.
85.
Kuhlmann-Wilsdorf
,
D.
,
1962
, “
A New Theory of Work Hardening in Crystals
,”
Trans. Met. Soc.
,
218
, p.
962
.
86.
Estrin
,
Y.
,
Toth
,
L.
,
Molinari
,
A.
, and
Bréchet
,
Y.
,
1998
, “
A Dislocation-Based Model for All Hardening Stages in Large Strain Deformation
,”
Acta Mater.
,
46
(
15
), pp.
5509
5522
.
87.
Arsenlis
,
A.
, and
Parks
,
D. M.
,
2002
, “
Modeling the Evolution of Crystallographic Dislocation Density in Crystal Plasticity
,”
J. Mech. Phys. Solids
,
50
(
9
), pp.
1979
2009
.
88.
Patra
,
A.
, and
McDowell
,
D. L.
,
2012
, “
Crystal Plasticity-Based Constitutive Modelling of Irradiated BCC Structures
,”
Philos. Mag.
,
92
(
7
), pp.
861
887
.
89.
Kubin
,
L. P.
,
Canova
,
G.
,
Condat
,
M.
,
Devincre
,
B.
,
Pontikis
,
V.
, and
Bréchet
,
Y.
,
1992
, “
Dislocation Microstructures and Plastic Flow: A 3D Simulation
,”
Solid State Phenom.
,
23–24
, pp.
455
472
.
You do not currently have access to this content.