Abstract

The effects of dynamic strain aging (DSA) on residual stresses generated in Ni-base superalloys during heat treatments are not well understood. In this study, the residual stress field induced by water quenching an IN718 disc while undergoing DSA is studied using coupled thermo-mechanical finite element (FE) analyses in conjunction with neutron diffraction (ND) measurements. A visco-plastic constitutive model that incorporates the effect of DSA is proposed to describe the experimentally observed negative strain rate sensitivity and abnormal temperature dependence phenomena in the stress–strain response of solid solution treated IN718. The predicted quenching residual stresses in the disc agree well with the ND measurements. Due to the DSA, a propagating high plastic strain rate region can be identified in the disc during the early stages of the quenching process. Due to the negative strain rate sensitivity and abnormal temperature dependence effects caused by DSA, the predicted residual stresses are approximately 10% greater than when those two effects are not accounted for. The effects of different convection heat transfer conditions in the FE model are examined and discussed. It is found that the convection heat transfer coefficients have a great influence both on the disc residual stresses and DSA-related plastic strain rate field predictions.

References

1.
Horvath
,
W.
,
Zechner
,
W.
,
Tockner
,
J.
,
Berchthaler
,
M.
,
Weber
,
G.
, and
Werner
,
E.
,
2001
, “
The Effectiveness of Direct Aging on Inconel 718 Forgings Produced at High Strain Rates as Obtained on a Screw Press
,”
Superalloys 718, 625, 706 and various derivatives
,
Pittsburgh, PA
,
June 17–20
, pp.
223
228
.
2.
Qin
,
H.
,
Bi
,
Z.
,
Yu
,
H.
,
Feng
,
G.
,
Du
,
J.
, and
Zhang
,
J.
,
2018
, “
Influence of Stress on γ″‌ Precipitation Behavior in Inconel 718 During Aging
,”
J. Alloys. Compd.
,
740
, pp.
997
1006
.
3.
Rahimi
,
S.
,
King
,
M.
, and
Dumont
,
C.
,
2017
, “
Stress Relaxation Behaviour in In718 Nickel Based Superalloy During Ageing Heat Treatments
,”
Mater. Sci. Eng. A.
,
708
, pp.
563
573
.
4.
Aba-Perea
,
P.
,
Pirling
,
T.
, and
Preuss
,
M.
,
2016
, “
In-Situ Residual Stress Analysis During Annealing Treatments Using Neutron Diffraction in Combination With a Novel Furnace Design
,”
Mater. Des.
,
110
, pp.
925
931
.
5.
Qin
,
H.
,
Bi
,
Z.
,
Yu
,
H.
,
Feng
,
G.
,
Zhang
,
R.
,
Guo
,
X.
,
Chi
,
H.
,
Du
,
J.
, and
Zhang
,
J.
,
2018
, “
Assessment of the Stress-Oriented Precipitation Hardening Designed by Interior Residual Stress During Ageing in In718 Superalloy
,”
Mater. Sci. Eng. A.
,
728
, pp.
183
195
.
6.
Woracek
,
R.
,
Santisteban
,
J.
,
Fedrigo
,
A.
, and
Strobl
,
M.
,
2018
, “
Diffraction in Neutron Imaging a Review
,”
Nuclear Instruments Methods Phys. Res. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
,
878
, pp.
141
158
.
7.
Dye
,
D.
,
Conlon
,
K.
, and
Reed
,
R.
,
2004
, “
Characterization and Modeling of Quenching-Induced Residual Stresses in the Nickel-Based Superalloy In718
,”
Metall. Mater. Trans. A.
,
35
(
6
), pp.
1703
1713
.
8.
Cihak
,
U.
,
Staron
,
P.
,
Clemens
,
H.
,
Homeyer
,
J.
,
Stockinger
,
M.
, and
Tockner
,
J.
,
2006
, “
Characterization of Residual Stresses in Turbine Discs by Neutron and High-Energy X-Ray Diffraction and Comparison to Finite Element Modeling
,”
Mater. Sci. Eng. A.
,
437
(
1
), pp.
75
82
.
9.
Rolph
,
J.
,
Evans
,
A.
,
Paradowska
,
A.
,
Hofmann
,
M.
,
Hardy
,
M.
, and
Preuss
,
M.
,
2012
, “
Stress Relaxation Through Ageing Heat Treatment—A Comparison Between In Situ and Ex Situ Neutron Diffraction Techniques
,”
C. R. Phys.
,
13
(
3
), pp.
307
315
.
10.
Aba-Perea
,
P. E.
,
Withers
,
P. J.
,
Pirling
,
T.
,
Paradowska
,
A.
,
Ma
,
D.
, and
Preuss
,
M.
,
2019
, “
In Situ Study of the Stress Relaxation During Aging of Nickel-Base Superalloy Forgings
,”
Metall. Mater. Trans. A.
,
50
(
8
), pp.
3555
3565
.
11.
Qin
,
H.
,
Zhang
,
R.
,
Bi
,
Z.
,
Lik
,
L. T.
,
Dong
,
H.
,
Du
,
J.
, and
Zhang
,
J.
,
2019
, “
Study on the Evolution of Residual Stress During Ageing Treatment in a Gh4169 Alloy Disk
,”
Acta Metall. Sin.
,
55
(
8
), pp.
997
1007
.
12.
Bi
,
Z.
,
Qin
,
H.
,
Dong
,
Z.
,
Wang
,
X.
,
Wang
,
M.
,
Liu
,
Y.
,
Du
,
J.
, and
Zhang
,
J.
,
2019
, “
Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings
,”
Acta Metall. Sin.
,
55
(
9
), pp.
1160
1174
.
13.
Prime
,
M. B.
,
Gnäupel-Herold
,
T.
,
Baumann
,
J. A.
,
Lederich
,
R. J.
,
Bowden
,
D. M.
, and
Sebring
,
R. J.
,
2006
, “
Residual Stress Measurements in a Thick, Dissimilar Aluminum Alloy Friction Stir Weld
,”
Acta Mater.
,
54
(
15
), pp.
4013
4021
.
14.
Mark
,
A.
,
Francis
,
J.
,
Dai
,
H.
,
Turski
,
M.
,
Hurrell
,
P.
,
Bate
,
S.
,
Kornmeier
,
J. R.
, and
Withers
,
P.
,
2012
, “
On the Evolution of Local Material Properties and Residual Stress in a Three-Pass Sa508 Steel Weld
,”
Acta Mater.
,
60
(
8
), pp.
3268
3278
.
15.
Woo
,
W.
,
An
,
G.
,
Kingston
,
E.
,
DeWald
,
A.
,
Smith
,
D.
, and
Hill
,
M.
,
2013
, “
Through-Thickness Distributions of Residual Stresses in Two Extreme Heat-Input Thick Welds: A Neutron Diffraction, Contour Method and Deep Hole Drilling Study
,”
Acta Mater.
,
61
(
10
), pp.
3564
3574
.
16.
Rist
,
M.
,
James
,
J.
,
Tin
,
S.
,
Roder
,
B.
, and
Daymond
,
M.
,
2006
, “
Residual Stresses in a Quenched Superalloy Turbine Disc: Measurements and Modeling
,”
Metall. Mater. Trans. A.
,
37
(
2
), pp.
459
467
.
17.
Cihak
,
U.
,
Stockinger
,
M.
,
Staron
,
P.
,
Tockner
,
J.
, and
Clemens
,
H.
,
2005
, “
Characterization of Residual Stresses in Compressor Discs for Aeroengines: Neutron Diffraction and Finite Element Simulations
,”
Proceedings of the Sixth International Symposium on Superalloys
,
Pittsburgh, PA
,
Oct. 2–5
, Vol.
718
, pp.
625
706
.
18.
Chen
,
J.
,
Song
,
R.
,
Qin
,
H.
,
Bi
,
Z.
,
Zhang
,
J.
, and
Li
,
D.
,
2019
, “
Multi-Scale Experiment and Simulation of Dynamic Strain Ageing Effect in Inconel 718 Superalloy
,”
12th International Congress on Thermal Stresses
,
Hangzhou, China
,
June 1–5
.
19.
Zhang
,
Z.
,
Feng
,
Y.
,
Tan
,
Q.
,
Zou
,
J.
,
Li
,
J.
,
Zhou
,
X.
,
Sun
,
G.
, and
Wang
,
Y.
,
2019
, “
Residual Stress Distribution in Ni-Based Superalloy Turbine Discs During Fabrication Evaluated by Neutron/x-Ray Diffraction Measurement and Thermomechanical Simulation
,”
Mater. Des.
,
166
, pp.
107603
.
20.
Song
,
R.-H.
,
Qin
,
H.-L.
,
Bi
,
Z.-N.
,
Zhang
,
J.
,
Chi
,
H.
,
Busso
,
E. P.
, and
Li
,
D.-F.
,
2020
, “
Experimental and Numerical Investigations of Dynamic Strain Ageing Behaviour in Solid Solution Treated Inconel 718 Superalloy
,”
Engin. Comput.
,
8
(
1
), pp.
19
35
.
21.
McCormick
,
P.
,
1988
, “
Theory of Flow Localisation Due to Dynamic Strain Ageing
,”
Acta Metall.
,
36
(
12
), pp.
3061
3067
.
22.
Hale
,
C.
,
Rollings
,
W.
, and
Weaver
,
M.
,
2001
, “
Activation Energy Calculations for Discontinuous Yielding in Inconel 718spf
,”
Mater. Sci. Eng. A.
,
300
(
1–2
), pp.
153
164
.
23.
Semiatin
,
S.
,
Fagin
,
P.
,
Streich
,
B.
,
Goetz
,
R.
, and
Venkatesh
,
V.
,
2018
, “
The High-Temperature Bauschinger Effect in Alloy 718
,”
Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications
,
Pittsburgh, PA
,
June 3–6
, Springer, pp.
957
975
.
24.
Jinhui
,
D.
,
Xudong
,
L.
,
Qun
,
D.
, and
Ying
,
L.
,
2017
, “
Effect of Solution Treatment on the Microstructure and Mechanical Properties of In718 Alloy
,”
Rare Metal Mater. Engin.
,
46
(
9
), pp.
2359
2365
.
25.
Qin
,
H.
,
Bi
,
Z.
,
Li
,
D.
,
Zhang
,
R.
,
Lee
,
T. L.
,
Feng
,
G.
,
Dong
,
H.
,
Du
,
J.
, and
Zhang
,
J.
,
2019
, “
Study of Precipitation-Assisted Stress Relaxation and Creep Behavior During the Ageing of a Nickel-Iron Superalloy
,”
Mater. Sci. Eng. A.
,
742
, pp.
493
500
.
26.
Aba-Perea
,
P.
,
Pirling
,
T.
,
Withers
,
P.
,
Kelleher
,
J.
,
Kabra
,
S.
, and
Preuss
,
M.
,
2016
, “
Determination of the High Temperature Elastic Properties and Diffraction Elastic Constants of Ni-Base Superalloys
,”
Mater. Des.
,
89
, pp.
856
863
.
27.
Gnäupel-Herold
,
T.
,
Brand
,
P. C.
, and
Prask
,
H. J.
,
1998
, “
Calculation of Single-Crystal Elastic Constants for Cubic Crystal Symmetry From Powder Diffraction Data
,”
J. Appl. Crystallogr.
,
31
(
6
), pp.
929
935
.
28.
Busso
,
E. P.
, and
McClintock
,
F. A.
,
1996
, “
A Dislocation Mechanics-Based Crystallographic Model of a B2-Type Intermetallic Alloy
,”
Int. J. Plast.
,
12
(
1
), pp.
1
28
.
29.
Busso
,
E. P.
,
1998
, “
A Continuum Theory for Dynamic Recrystallization With Microstructure-Related Length Scales
,”
Int. J. Plast.
,
14
(
4–5
), pp.
319
353
.
30.
Li
,
D.-F.
, and
O’Dowd
,
N. P.
,
2011
, “
On the Evolution of Lattice Deformation in Austenitic Stainless Steels the Role of Work Hardening at Finite Strains
,”
J. Mech. Phys. Solids.
,
59
(
12
), pp.
2421
2441
.
31.
Kubin
,
L.
,
Chihab
,
K.
, and
Estrin
,
Y.
,
1988
, “
The Rate Dependence of the Portevin-le Chatelier Effect
,”
Acta Metall.
,
36
(
10
), pp.
2707
2718
.
32.
Böhlke
,
T.
,
Bondár
,
G.
,
Estrin
,
Y.
, and
Lebyodkin
,
M. A.
,
2009
, “
Geometrically Non-Linear Modeling of the Portevin–le Chatelier Effect
,”
Comput. Mater. Sci.
,
44
(
4
), pp.
1076
1088
.
33.
Ren
,
S.
,
Mazière
,
M.
,
Forest
,
S.
,
Morgeneyer
,
T. F.
, and
Rousselier
,
G.
,
2017
, “
A Constitutive Model Accounting for Strain Ageing Effects on Work-Hardening. Application to a C–mn Steel
,”
Comptes Rendus Mécanique
,
345
(
12
), pp.
908
921
.
34.
Bollenrath
,
F.
,
Hauk
,
V.
, and
Muller
,
E.
,
1967
, “
On the Calculation of Polycrystalline Elasticity Constants From Single Crystal Data
,”
Z Metallkunde
,
58
(
1
), pp.
76
82
.
35.
Wang
,
J.
,
Guo
,
W.-G.
,
Su
,
Y.
,
Zhou
,
P.
, and
Yuan
,
K.
,
2016
, “
Anomalous Behaviors of a Single-Crystal Nickel-Base Superalloy Over a Wide Range of Temperatures and Strain Rates
,”
Mech. Mater.
,
94
, pp.
79
90
.
36.
Sedighi
,
M.
, and
McMahon
,
C.
,
2000
, “
The Influence of Quenchant Agitation on the Heat Transfer Coefficient and Residual Stress Development in the Quenching of Steels
,”
Proc. Inst. Mech. Eng. B.
,
214
(
7
), pp.
555
567
.
37.
Soares
,
G.
,
Queiroz
,
R.
, and
Santos
,
L.
,
2020
, “
Effects of Dynamic Strain Aging on Strain Hardening Behavior, Dislocation Substructure, and Fracture Morphology in a Ferritic Stainless Steel
,”
Metall. Mater. Trans. A.
,
51
(
2
), pp.
725
739
.
38.
Guo
,
H.-J.
,
Ling
,
C.
,
Busso
,
E. P.
,
Zhong
,
Z.
, and
Li
,
D.-F.
,
2020
, “
Crystal Plasticity Based Investigation of Micro-Void Evolution Under Multi-Axial Loading Conditions
,”
Int. J. Plast.
,
129
, p.
102673
.
39.
Guo
,
H.-J.
, and
Li
,
D.-F.
,
2019
, “
Crystal Plasticity-Based Micromechanical Finite Element Modelling of Ductile Void Growth for an Aluminium Alloy Under Multiaxial Loading Conditions
,”
Proc. Inst. Mech. Engin. Part L: J. Mater. Des. Appl.
,
233
(
1
), pp.
52
62
.
You do not currently have access to this content.