In this paper, a protocol for interpretation of static creep tests on closed-cell polyurethane foams is defined, considering the influence of a finite loading duration when identifying creep compliance parameters. Experiments were conducted at isothermal conditions with temperatures ranging from 20 to 120 °C. The experimental results indicate Lomnitz, i.e., logarithmic-type creep behavior. We discuss uniqueness of the backcalculated parameters. Furthermore, the viscoelastic material parameters obtained were verified in independent experiments: elastic compliance by ultrasonic wave velocity measurements, viscous material parameters by relaxation tests.

References

1.
Mainardi
,
F.
, and
Spada
,
G.
,
2011
, “
Creep, Relaxation and Viscosity Properties for Basis Fractional Models in Rheology
,”
Eur. Phys. J. Spec. Top.
,
193
(
1
), pp.
133
160
.
2.
Bazant
,
Z. P.
, and
Prasannan
,
S.
,
1989
, “
Solidification Theory for Concrete Creep—I: Formulation
,”
ASCE J. Eng. Mech.
,
115
(
8
), pp.
1691
1703
.
3.
Bažant
,
Z. P.
,
Hauggard
,
A. B.
,
Baweja
,
S.
, and
Ulm
,
F.-J.
,
1997
, “
Microprestress Solidification Theory for Concrete Creep—Part I: Aging and Drying Effects
,”
ASCE J. Eng. Mech.
,
123
(
11
), pp.
1188
1194
.
4.
Acker
,
P.
, and
Ulm
,
F.-J.
,
2001
, “
Creep and Shrinkage of Concrete: Physical Origins and Practical Measurements
,”
Nucl. Eng. Des.
,
203
(
2–3
), pp.
148
158
.
5.
Pichler
,
C.
,
Lackner
,
R.
, and
Mang
,
H. A.
,
2008
, “
Multiscale Model for Creep of Shotcrete—From Logarithmic-Type Viscous Behavior of CSH at the μm-Scale to Macroscopic Tunnel Analysis
,”
J. Adv. Concrete Technol.
,
6
(
1
), pp.
91
110
.
6.
Pichler
,
C.
, and
Lackner
,
R.
,
2009
, “
Identification of Logarithmic-Type Creep of Calcium-Silicate-Hydrates by Means of Nanoindentation
,”
Strain
,
45
(
1
), pp.
17
25
.
7.
Lomnitz
,
C.
,
1956
, “
Creep Measurements in Igneous Rocks
,”
J. Geol.
,
64
(
5
), pp.
473
479
.
8.
Lomnitz
,
C.
,
1957
, “
Linear Dissipation in Solids
,”
J. Appl. Phys.
,
28
(
2
), pp.
201
205
.
9.
Lomnitz
,
C.
,
1962
, “
Application of Logarithmic Creep Law to Stress Wave Attenuation in Solid Earth
,”
J. Geophys. Res.
,
67
(
1
), pp.
365
367
.
10.
Pandey
,
V.
, and
Holm
,
S.
,
2016
, “
Linking the Fractional Derivative and the Lomnitz Creep Law to Non-Newtonian Time-Varying Viscosity
,”
Phys. Rev. E
,
94
(
3
), p.
032606
.
11.
Buckingham
,
M. J.
,
2000
, “
Wave Propagation, Stress Relaxation, and Grain-to-Grain Shearing in Saturated, Unconsolidated Marine Sediments
,”
J. Acoust. Soc. Am.
,
108
(
6
), pp.
2796
2815
.
12.
Davis
,
M.
, and
Thompson
,
N.
,
1950
, “
Creep in a Precipitation-Hardened Alloy
,”
Proc. Phys. Soc. London, B
,
63
(
11
), pp.
847
860
. 371),
13.
Wyatt
,
O. H.
,
1953
, “
Transient Creep in Pure Metals
,”
Proc. Phys. Soc. London, B
,
66
(
6
), pp.
459
480
.
14.
Nabarro
,
F. R. N.
,
2001
, “
The Time Constant of Logarithmic Creep and Relaxation
,”
Mater. Sci. Eng. A
,
309–310
, pp.
227
228
.
15.
Nabarro
,
F. R. N.
,
2001
, Creep Mechanism in Crystalline Solids, 2nd ed., Elsevier, Amsterdam, The Netherlands, pp.
1788
1795
.
16.
Savitzky
,
A.
, and
Golay
,
M. J. E.
,
1964
, “
Smoothing and Differentiation of Data by Simplified Least Squares Procedures
,”
Anal. Chem.
,
36
(
8
), pp.
1627
1639
.
17.
Press
,
H. P.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
,
1992
,
Numerical Recipes in Fortran 77: The Art of Scientific Computing
, 2nd ed.,
Cambridge University Press
, Cambridge, UK.
18.
Mainardi
,
F.
, and
Spada
,
G.
,
2012
, “
On the Viscoelastic Characterization of the Jeffreys-Lomnitz Law of Creep
,”
Rheol. Acta
,
51
(
9
), pp.
783
791
.
19.
Garra
,
R.
,
Mainardi
,
F.
, and
Spada
,
G.
,
2017
, “
A Generalization of the Lomnitz Logarithmic Creep Law Via Hadamard Fractional Calculus
,”
Chaos, Solitons Fractals
,
102
, pp.
333
338
.
20.
Moreland
,
J. C.
,
Wilkes
,
G. L.
, and
Turner
,
R. B.
,
1994
, “
Viscoelastic Behavior of Flexible Slabstock Polyurethane Foams - Dependence on Temperature and Relative Humidity—I: Tensile and Compression Stress (Load) Relaxation
,”
J. Appl. Polym. Sci.
,
52
(
4
), pp.
549
568
.
21.
Moreland
,
J. C.
,
Wilkes
,
G. L.
, and
Turner
,
R. B.
,
1994
, “
Viscoelastic Behavior of Flexible Slabstock Polyurethane Foams as a Function of Temperature and Relative Humidity—II: Compressive Creep Behavior
,”
J. Appl. Polym. Sci.
,
52
(
4
), pp.
569
576
.
22.
Zhu
,
H. X.
, and
Mills
,
N. J.
,
1999
, “
Modelling the Creep of Open-Cell Polymer Foams
,”
J. Mech. Phys. Solids
,
47
(
7
), pp.
1437
1457
.
23.
Tobushi
,
H.
,
Hayashi
,
S.
,
Endo
,
M.
, and
Shimada
,
D.
,
2002
, “
Creep and Stress Relaxation of Polyurethane-Shape Memory Polymer Foam
,”
Trans. Jpn. Soc. Mech. Eng. Ser. A
,
68
(
676
), pp.
1788
1793
(in Japanese).
24.
Xia
,
H.
,
Song
,
M.
,
Zhang
,
Z.
, and
Richardson
,
M.
,
2007
, “
Microphase Separation, Stress Relaxation, and Creep Behavior of Polyurethane Nanocomposites
,”
J. Appl. Polym. Sci.
,
103
(
5
), pp.
2992
3002
.
25.
Kanyanta
,
V.
, and
Ivankovic
,
A.
,
2010
, “
Mechanical Characterisation of Polyurethane Elastomer for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
1
), pp.
51
62
.
26.
Stehfest
,
H.
,
1970
, “
Algorithm 368: Numerical Inversion of Laplace Transforms
,”
Commun. ACM
,
13
, pp.
47
49
.
27.
White
,
S. W.
,
Kim
,
S. K.
,
Bajaj
,
A. K.
,
Davies
,
P.
,
Showers
,
D. K.
, and
Liedtke
,
P. E.
,
2000
, “
Experimental Techniques and Identification of Nonlinear and Viscoelastic Properties of Flexible Polyurethane Foam
,”
Nonlinear Dyn.
,
22
(
3
), pp.
281
313
.
28.
Singh
,
R.
,
Davies
,
P.
, and
Bajaj
,
A. K.
,
2003
, “
Identification of Nonlinear and Viscoelastic Properties of Flexible Polyurethane Foam
,”
Nonlinear Dyn.
,
34
(
3/4
), pp.
319
346
.
29.
Deng
,
R.
,
Davies
,
P.
, and
Bajaj
,
A. K.
,
2004
, “
A Case Study on the Use of Fractional Derivatives: The Low-Frequency Viscoelastic Uni-Directional Behavior of Polyurethane Foam
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
247
265
.
30.
Deng
,
R.
,
Davies
,
P.
, and
Bajaj
,
A. K.
,
2006
, “
A Nonlinear Fractional Derivative Model for Large Uni-Axial Deformation Behavior of Polyurethane Foam
,”
Signal Process.
,
86
(
10
), pp.
2728
2743
.
31.
Deng
,
R.
,
Davies
,
P.
, and
Bajaj
,
A. K.
,
2003
, “
Flexible Polyurethane Foam Modelling and Identification of Viscoelastic Parameters for Automotive Seating Applications
,”
J. Sound Vib.
,
262
(
3
), pp.
391
417
.
32.
Azizi
,
Y.
,
Davies
,
P.
, and
Bajaj
,
A. K.
,
2016
, “
Identification of Nonlinear Viscoelastic Models of Flexible Polyurethane Foam From Uniaxial Compression Data
,”
ASME J. Eng. Mater. Technol.
,
138
(
2
), p.
021008
.
33.
Dzierza
,
W.
,
1982
, “
Stress–Relaxation Properties of Segmented Polyurethane Rubbers
,”
J. Appl. Polym. Sci.
,
27
(
5
), pp.
1487
1499
.
34.
Nitta
,
K.-H.
, and
Suzuki
,
K.
,
1999
, “
Prediction of Stress–Relaxation Behavior in High Density Polyethylene Solids
,”
Macromol. Theory Simul.
,
8
(
3
), pp.
254
259
.
35.
Slonimsky
,
G. L.
,
1967
, “
Laws of Mechanical Relaxation Processes in Polymers
,”
J. Polym. Sci., Part C
,
16
(
3
), pp.
1667
1672
.
36.
Ortiz
,
C.
,
Ober
,
C. K.
, and
Kramer
,
E. J.
,
1998
, “
Stress Relaxation of a Main–Chain, Smectic, Polydomain Liquid Crystalline Elastomer
,”
Polymer
,
39
(
16
), pp.
3713
3718
.
37.
Barua
,
B.
, and
Saha
,
M. C.
,
2011
, “
Tensile Stress Relaxation Behavior of Thermosetting Polyurethane Solid and Foams: Experiment and Model Prediction
,”
ASME J. Eng. Mater. Technol.
,
133
(
4
), p.
041007
.
38.
Barua
,
B.
, and
Saha
,
M. C.
,
2016
, “
Incorporating Density and Temperature in the Stretched Exponential Model for Predicting Stress Relaxation Behavior of Polymer Foams
,”
ASME J. Eng. Mater. Technol.
,
138
(
1
), p.
011001
.
39.
Kaushiva
,
B. D.
,
Dounis
,
D. V.
, and
Wilkes
,
G. L.
,
2000
, “
Influences of Copolymer Polyol on Structural and Viscoelastic Properties in Molded Flexible Polyurethane Foams
,”
J. Appl. Polym. Sci.
,
78
(
4
), pp.
766
786
.
40.
Nutting
,
P. G.
,
1921
, “
A New General Law of Deformation
,”
J. Franklin Inst.
,
191
(
5
), pp.
679
685
.
41.
Scott Blair
,
G. W.
, and
Reiner
,
M.
,
1951
, “
The Rheological Law Underlying the Nutting Equation
,”
Appl. Sci. Res.
,
2
(
1
), p.
225
.
42.
Marquardt
,
D. W.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
,
11
(
2
), pp.
431
441
.
43.
Love
,
A. E. H.
,
1959
,
A Treatise of the Mathematical Theory of Elasticity
, 4th ed.,
Cambridge University Press
, Cambridge, UK.
44.
Warfield
,
R. W.
, and
Barnet
,
F. R.
,
1972
, “
Elastic Constants of Bulk Polymers
,” Naval Ordnance Laboratory, White Oak, Silver Spring, MD, Report No. NOLTR 71-227.
45.
Widdle
,
R. D.
, Jr.
,
Bajaj
,
A. K.
, and
Davies
,
P.
,
2008
, “
Measurement of the Poisson's Ratio of Flexible Polyurethane Foam and Its Influence on a Uniaxial Compression Model
,”
Int. J. Eng. Sci.
,
46
(
1
), pp.
31
49
.
46.
Nitta
,
K.-H.
, and
Yamaguchi
,
M.
,
1998
, “
A Constitutive Equation for Nonlinear Stress–Strain Curves of Crystalline Polymers
,”
J. Mater. Sci.
,
33
(
4
), pp.
1015
1021
.
You do not currently have access to this content.