In this paper, the necessary and sufficient conditions for fulfilling the thermodynamic consistency of computational homogenization schemes in the framework of hierarchical multiscale theories are defined. The proposal is valid for arbitrary homogenization based multiscale procedures, including continuum and discontinuum methods in either scale. It is demonstrated that the well-known Hill–Mandel variational criterion for homogenization scheme is a necessary, but not a sufficient condition for the micro–macro thermodynamic consistency when dissipative material responses are involved at any scale. In this sense, the additional condition to be fulfilled considering that the multiscale thermodynamic consistency is established. The general case of temperature-dependent, higher order elastoplasticity is considered as theoretical framework to account for the material dissipation at micro and macro scales of observation. It is shown that the thermodynamic consistency enforces the homogenization of the nonlocal terms of the finer scale's free energy density; however, this does not lead to nonlocal gradient effects on the coarse scale. Then, the particular cases of local isothermal elastoplasticity and continuum damage are considered for the purpose of the proposed thermodynamically consistent approach for multiscale homogenizations.

References

1.
Guidault
,
P. A.
,
Allix
,
O.
,
Champaney
,
L.
, and
Navarro
,
J. P.
,
2007
, “
A Two-Scale Approach With Homogenization for the Computation of Cracked Structures
,”
Comput. Struct.
,
85
(17–18), pp.
1360
1371
.
2.
Hettich
,
T.
,
Hund
,
A.
, and
Ramm
,
E.
,
2008
, “
Modeling of Failure in Composites by X-FEM and Level Sets Within a Multiscale Framework
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
5
), pp.
414
424
.
3.
Eckardt
,
S.
, and
Könke
,
C.
,
2008
, “
Adaptive Damage Simulation of Concrete Using Heterogeneous Multiscale Models
,”
J. Algorithm Comput. Technol.
,
2
(
2
), pp.
275
297
.
4.
Lloberas-Valls
,
O.
,
Rixen
,
D. J.
,
Simone
,
A.
, and
Sluys
,
L. J.
,
2012
, “
Multiscale Domain Decomposition Analysis of Quasi-Brittle Heterogeneous Materials
,”
Int. J. Numer. Methods. Eng.
,
89
(
11
), pp.
1337
1366
.
5.
Belytschko
,
T.
, and
Song
,
J.-H.
,
2010
, “
Coarse-Graining of Multiscale Crack Propagation
,”
Int. J. Numer. Methods Eng.
,
81
(5), pp.
537
563
.
6.
de Souza Neto
,
E. A.
, and
Feijóo
,
R. A.
,
2006
, “
Variational Foundations of Multi-Scale Constitutive Models of Solid: Small and Large Strain Kinematical Formulation
,” National Laboratory for Scientific Computing, Rio de Janeiro, Brazil, Report No.
16
.
7.
Abraham
,
F. F.
,
Broughton
,
J. Q.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
,
1998
, “
Spanning the Continuum to Quantum Length Scales in a Dynamic Simulation of Brittle Fracture
,”
Europhys. Lett.
,
44
(
6
), pp.
783
787
.
8.
Khare
,
R.
,
Mielke
,
S. L.
,
Paci
,
J. T.
,
Zhang
,
S.
,
Ballarini
,
R.
,
Schatz
,
G. C.
, and
Belytschko
,
T.
,
2007
, “
Coupled Quantum Mechanical/Molecular Mechanical Modeling of the Fracture of Defective Carbon Nanotubes and Graphene Sheets
,”
Phys. Rev. B
,
75
(7), pp.
96
113
.
9.
Xiao
,
S. P.
, and
Belytschko
,
T.
,
2004
, “
A Bridging Domain Method for Coupling Continua With Molecular Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
193
(17–20), pp.
1645
1669
.
10.
Kouznetsova
, V
. G.
,
Geers
,
M. G. D.
, and
Brekelmans
,
W. A. M.
,
2004
, “
Multi-Scale Second-Order Computational Homogenization of Multi-Phase Materials: A Nested Finite Element Solution Strategy
,”
Comput. Methods Appl. Mech. Eng.
,
193
(48–51), pp.
5525
5550
.
11.
Peric
,
D.
,
de Souza Neto
,
E. A.
,
Feijóo
,
R. A.
,
Partovi
,
M.
, and
Carneiro Molina
,
A. J.
,
2011
, “
On Micro-to-Macro Transitions for Multi-Scale Analysis of Non-Linear Heterogeneous Materials: Unified Variational Basis and Finite Element Implementation
,”
Int. J. Numer. Methods Eng.
,
87
(1–5), pp.
149
170
.
12.
Gitman
,
I. M.
,
Askes
,
H.
, and
Sluys
,
L. J.
,
2007
, “
Representative Volume: Existence and Size Determination
,”
Eng. Fract. Mech.
,
74
(
16
), pp.
2518
2534
.
13.
Nguyen
,
V. P.
, Stroeven, M., and Sluys, L. J.,
2012
, “
Multiscale Failure Modeling of Concrete: Micromechanical Modeling, Discontinuous Homogenization and Parallel Computations
,”
Comput. Methods Appl. Mech. Eng.
,
201–204
, pp.
139
156
.
14.
Coenen
,
E. W. C.
,
Kouznetsova
, V
. G.
,
Bosco
,
E.
, and
Geers
,
M. G. D.
,
2012
, “
A Multi-Scale Approach to Bridge Microscale Damage and Macroscale Failure: A Nested Computational Homogenization-Localization Framework
,”
Int. J. Fract.
,
178
(1), pp.
157
178
.
15.
Karamnejad
,
A.
,
Nguyen
, V
. P.
, and
Sluys
,
L. J.
,
2013
, “
A Multi-Scale Rate Dependent Crack Model for Quasi-Brittle Heterogeneous Materials
,”
Eng. Fract. Mech.
,
104
, pp.
96
113
.
16.
Poh
,
L. H.
,
Peerlings
,
R. H. J.
,
Geers
,
M. G. D.
, and
Swaddiwudhipong
,
S.
,
2013
, “
Homogenization Towards a Grain-Size Dependent Plasticity Theory for Single Slip
,”
J. Mech. Phys. Solids
,
61
(
4
), pp.
913
927
.
17.
Toro
,
S.
,
Sanchez
,
P. J.
,
Huespe
,
A. E.
,
Guisti
,
S. M.
,
Blanco
,
P. J.
, and
Feijóo
,
R. A.
,
2014
, “
A Two-Scale Failure Model for Heterogeneous Materials: Numerical Implementation Based on the Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
97
(
5
), pp.
313
351
.
18.
Verhoosel
,
C. V.
,
Remmers
,
J. J. C.
,
Gutierrez
,
M. A.
, and
de Borst
,
R.
,
2010
, “
Computational Homogenization for Adhesive and Cohesive Failure in Quasi-Brittle Solids
,”
Int. J. Numer. Methods Eng.
,
83
(8–9), pp.
1155
1179
.
19.
Oliver
,
J.
,
Caicedo
,
M.
,
Roubin
,
E.
,
Huespe
,
A. E.
, and
Hernández
,
J. A.
,
2015
, “
Continuum Approach to Computational Multiscale Modeling of Propagating Fracture
,”
Comput. Methods Appl. Mech. Eng.
,
294
, pp.
384
427
.
20.
Nguyen
,
V. P.
,
Stroeven
,
M.
, and
Sluys
,
L. J.
,
2012
, “
An Enhanced Continuous Discontinuous Multiscale Method for Modeling Mode-I Cohesive Failure in—Random Heterogeneous Quasi-Brittle Materials
,”
Eng. Fract. Mech.
,
79
, pp.
78
102
.
21.
Poh
,
L. H.
,
Peerlings
,
R. H. J.
,
Geers
,
M. G. D.
, and
Swaddiwudhipong
,
S.
,
2013
, “
Towards a Homogenized Plasticity Theory Which Predicts Structural and Microstructural Size Effects
,”
J. Mech. Phys. Solids
,
61
(
11
), pp.
2240
2259
.
22.
Blanco
,
P. J.
, and
Giusti
,
S. M.
,
2014
, “
Thermomechanical Multiscale Constitutive Modeling: Accounting for Microstructural Thermal Effects
,”
J. Elasticity
,
115
(
1
), pp.
27
46
.
23.
Miehe
,
C.
,
Schröder
,
J.
, and
Schotte
,
J.
,
1999
, “
Computational Homogenization Analysis in Finite Plasticity Simulation of Texture Development in Polycrystalline Materials
,”
Comput. Methods Appl. Mech. Eng.
,
171
(3–4), pp.
387
418
.
24.
Maugin
,
G. A.
,
1992
,
The Thermomechanics of Plasticity and Fracture
,
Press Syndicate of the University of Cambridge
,
Cambridge, UK
.
25.
Suquet
,
P. M.
,
1987
, “
Elements of Homogenization for Inelastic Solid Mechanics
,”
Homogenization Techniques for Composite Materials
(Lecture Notes in Physics),
E.
Sanchez-Palenzia
and
A.
Zaoui
, eds.,
Springer-Verlag
, Berlin, pp.
193
278
.
26.
Svedberg
,
T.
, and
Runesson
,
K.
,
1997
, “
A Thermodynamically Consistent Theory of Gradient-Regularized Plasticity Coupled to Damage
,”
Int. J. Plast.
,
13
(6–7), pp.
669
696
.
27.
Vrech
,
S. M.
, and
Etse
,
G.
,
2009
, “
Gradient and Fracture Energy-Based Plasticity Theory for Quasi-Brittle Materials Like Concrete
,”
Comput. Methods Appl. Mech. Eng.
,
199
(1–4), pp.
136
147
.
28.
Ripani
,
M.
,
Etse
,
G.
,
Vrech
,
S.
, and
Mroginski
,
J.
,
2014
, “
Thermodynamic Gradient-Based Poroplastic Theory for Concrete Under High Temperatures
,”
Int. J. Plast.
,
61
, pp.
157
177
.
29.
Miehe
,
C.
,
Schröder
,
J.
, and
Becker
,
M.
,
2002
, “
Computational Homogenization Analysis in Finite Elasticity: Material and Structural Instabilities on the Micro- and Macro-Scales of Periodic Composites and Their Interaction
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
44
), pp.
4971
5005
.
30.
Gross
,
D.
, and
Seeling
,
T.
,
2011
,
Fracture Mechanics
,
Springer
,
New York
.
31.
Blanco
,
P. J.
,
Sánchez
,
P. J.
,
Souza Neto
,
E. A.
, and
Feijóo
,
R. A.
,
2014
, “
Variational Foundations and Generalized Unified Theory of RVE-Based Multiscale Models
,”
Arch. Comput. Methods Eng.
,
23
(2), pp. 191–253.
32.
Sánchez
,
P. J.
,
Blanco
,
P. J.
,
Huespe
,
A. E.
, and
Feijóo
,
R. A.
,
2013
, “
Failure-Oriented Multi-Scale Variational Formulation: Micro-Structures With Nucleation and Evolution of Softening Bands
,”
Comput. Methods Appl. Mech. Eng.
,
257
, pp.
221
247
.
33.
Bosco
,
E.
,
Kouznetsova
, V
. G.
,
Coenen
,
E. W. C.
,
Geers
,
M. G. D.
, and
Salvadori
,
A.
,
2014
, “
A Multiscale Framework for Localizing Microstructures Towards the Onset of Macroscopic Discontinuity
,”
Comput. Mech.
,
54
(
2
), pp.
299
319
.
34.
Kulkarni
,
M. G.
,
Matouš
,
K.
, and
Geubelle
,
P. H.
,
2010
, “
Coupled Multi-Scale Cohesive Modeling of Failure in Heterogeneous Adhesives
,”
Int. J. Numer. Methods Eng.
,
84
(
8
), pp.
916
946
.
35.
Caggiano
,
A.
,
Etse
,
G.
, and
Martinelli
,
E.
,
2012
, “
Zero-Thickness Interface Model Formulation for Failure Behavior of Fiber-Reinforced Cementitious Composites
,”
Comput. Struct.
,
98–99
, pp.
23
32
.
You do not currently have access to this content.