Microstructurally informed macroscopic impact response of a high-manganese austenitic steel was modeled through incorporation of the viscoplastic self-consistent (VPSC) crystal plasticity model into the ansys ls-dyna nonlinear explicit finite-element (FE) frame. Voce hardening flow rule, capable of modeling plastic anisotropy in microstructures, was utilized in the VPSC crystal plasticity model to predict the micromechanical response of the material, which was calibrated based on experimentally measured quasi-static uniaxial tensile deformation response and initially measured textures. Specifically, hiring calibrated Voce parameters in VPSC, a modified material response was predicted employing local velocity gradient tensors obtained from the initial FE analyses as a new boundary condition for loading state. The updated micromechanical response of the material was then integrated into the macroscale material model by calibrating the Johnson–Cook (JC) constitutive relationship and the corresponding damage parameters. Consequently, we demonstrate the role of geometrically necessary multi-axial stress state for proper modeling of the impact response of polycrystalline metals and validate the presented approach by experimentally and numerically analyzing the deformation response of the Hadfield steel (HS) under impact loading.

References

1.
Armstrong
,
R. W.
, and
Walley
,
S. M.
,
2008
, “
High Strain Rate Properties of Metals and Alloys
,”
Int. Mater. Rev.
,
53
(
3
), pp.
105
128
.
2.
Bayraktar
,
E.
,
Khalid
,
F. A.
, and
Levaillant
,
C.
,
2004
, “
Deformation and Fracture Behaviour of High Manganese Austenitic Steel
,”
J. Mater. Process. Technol.
,
147
(
2
), pp.
145
154
.
3.
Adler
,
P. H.
,
Olson
,
G. B.
, and
Owen
,
W. S.
,
1986
, “
Strain Hardening of Hadfield Manganese Steel
,”
Metall. Mater. Trans. A
,
17
(
10
), pp.
1725
1737
.
4.
Li
,
Y.
,
Zhu
,
L.
,
Liu
,
Y.
,
Wei
,
Y.
,
Wu
,
Y.
,
Tang
,
D.
, and
Mi
,
Z.
,
2013
, “
On the Strain Hardening and Texture Evolution in High Manganese Steels: Experiments and Numerical Investigation
,”
J. Mech. Phys. Solids
,
61
(
12
), pp.
2588
2604
.
5.
Canadinc
,
D.
,
Sehitoglu
,
H.
,
Maier
,
H. J.
,
Niklasch
,
D.
, and
Chumlyakov
,
Y. I.
,
2007
, “
Orientation Evolution in Hadfield Steel Single Crystals Under Combined Slip and Twinning
,”
Int. J. Solids Struct.
,
44
(
1
), pp.
34
50
.
6.
Canadinc
,
D.
,
Efstathiou
,
C.
, and
Sehitoglu
,
H.
,
2008
, “
On the Negative Strain Rate Sensitivity of Hadfield Steel
,”
Scr. Mater.
,
59
(
10
), pp.
1103
1106
.
7.
Tucker
,
M. T.
,
Horstemeyer
,
M. F.
,
Gullett
,
P. M.
,
El Kadiri
,
H.
, and
Whittington
,
W. R.
,
2009
, “
Anisotropic Effects on the Strain Rate Dependence of a Wrought Magnesium Alloy
,”
Scr. Mater.
,
60
(
3
), pp.
182
185
.
8.
Bal
,
B.
,
Gumus
,
B.
,
Gerstein
,
G.
,
Canadinc
,
D.
, and
Maier
,
H. J.
,
2015
, “
On the Micro-Deformation Mechanisms Active in High-Manganese Austenitic Steels Under Impact Loading
,”
Mater. Sci. Eng. A
,
632
, pp.
29
34
.
9.
Cockcroft
,
M. G.
, and
Latham
,
D. J.
,
1968
, “
Ductility and the Workability of Metals
,”
J. Inst. Met.
,
96
(
1
), pp.
33
39
.
10.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
11.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
7th International Symposium on Ballistics
, The Hague, The Netherlands, Apr. 19–21, Vol.
21
, pp.
541
547
.
12.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1987
, “
Dislocation‐Mechanics‐Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
,
61
(
5
), pp.
1816
1825
.
13.
Børvik
,
T.
,
Hopperstad
,
O. S.
,
Berstad
,
T.
, and
Langseth
,
M.
,
2001
, “
A Computational Model of Viscoplasticity and Ductile Damage for Impact and Penetration
,”
Eur. J. Mech. A: Solids
,
20
(
5
), pp.
685
712
.
14.
Dey
,
S.
,
Børvik
,
T.
,
Hopperstad
,
O. S.
, and
Langseth
,
M.
,
2007
, “
On the Influence of Constitutive Relation in Projectile Impact of Steel Plates
,”
Int. J. Impact Eng.
,
34
(
3
), pp.
464
486
.
15.
Xue
,
L.
, and
Wierzbicki
,
T.
,
2008
, “
Ductile Fracture Initiation and Propagation Modeling Using Damage Plasticity Theory
,”
Eng. Fract. Mech.
,
75
(
11
), pp.
3276
3293
.
16.
El-Magd
,
E.
, and
Abouridouane
,
M.
,
2006
, “
Characterization, Modelling and Simulation of Deformation and Fracture Behaviour of the Light-Weight Wrought Alloys Under High Strain Rate Loading
,”
Int. J. Impact Eng.
,
32
(
5
), pp.
741
758
.
17.
Brünig
,
M.
, and
Gerke
,
S.
,
2011
, “
Simulation of Damage Evolution in Ductile Metals Undergoing Dynamic Loading Conditions
,”
Int. J. Plast.
,
27
(
10
), pp.
1598
1617
.
18.
Nahshon
,
K.
, and
Hutchinson
,
J. W.
,
2008
, “
Modification of the Gurson Model for Shear Failure
,”
Eur. J. Mech. A: Solids
,
27
(
1
), pp.
1
17
.
19.
Nahshon
,
K.
, and
Xue
,
Z.
,
2009
, “
A Modified Gurson Model and Its Application to Punch-Out Experiments
,”
Eng. Fract. Mech.
,
76
(
8
), pp.
997
1009
.
20.
Wang
,
X.
, and
Shi
,
J.
,
2013
, “
Validation of Johnson-Cook Plasticity and Damage Model Using Impact Experiment
,”
Int. J. Impact Eng.
,
60
, pp.
67
75
.
21.
Børvik
,
T.
,
Hopperstad
,
O. S.
, and
Berstad
,
T.
,
2003
, “
On the Influence of Stress Triaxiality and Strain Rate on the Behaviour of a Structural Steel—Part II: Numerical Study
,”
Eur. J. Mech. A: Solids
,
22
(
1
), pp.
15
32
.
22.
Børvik
,
T.
,
Hopperstad
,
O. S.
, and
Pedersen
,
K. O.
,
2010
, “
Quasi-Brittle Fracture During Structural Impact of AA7075-T651 Aluminium Plates
,”
Int. J. Impact Eng.
,
37
(
5
), pp.
537
551
.
23.
Hopperstad
,
O. S.
,
Børvik
,
T.
,
Langseth
,
M.
,
Labibes
,
K.
, and
Albertini
,
C.
,
2003
, “
On the Influence of Stress Triaxiality and Strain Rate on the Behaviour of a Structural Steel—Part I: Experiments
,”
Eur. J. Mech. A: Solids
,
22
(
1
), pp.
1
13
.
24.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space
,”
Int. J. Mech. Sci.
,
46
(
1
), pp.
81
98
.
25.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
A Comparative Study on Various Ductile Crack Formation Criteria
,”
ASME J. Eng. Mater. Technol.
,
126
(
3
), pp.
314
324
.
26.
Tanguy
,
B.
,
Besson
,
J.
,
Piques
,
R.
, and
Pineau
,
A.
,
2005
, “
Ductile to Brittle Transition of an A508 Steel Characterized by Charpy Impact Test—Part II: Modeling of the Charpy Transition Curve
,”
Eng. Fract. Mech.
,
72
(
3
), pp.
413
434
.
27.
Eberle
,
A.
,
Klingbeil
,
D.
, and
Schicker
,
J.
,
2000
, “
The Calculation of Dynamic JR-Curves From the Finite Element Analysis of a Charpy Test Using a Rate-Dependent Damage Model
,”
Nucl. Eng. Des.
,
198
(
1
), pp.
75
87
.
28.
Altenhof
,
W.
,
Raczy
,
A.
,
Laframboise
,
M.
,
Loscher
,
J.
, and
Alpas
,
A.
,
2004
, “
Numerical Simulation of AM50A Magnesium Alloy Under Large Deformation
,”
Int. J. Impact Eng.
,
30
(
2
), pp.
117
142
.
29.
Mediavilla
,
J.
,
Peerlings
,
R. H. J.
, and
Geers
,
M. G. D.
,
2006
, “
A Nonlocal Triaxiality-Dependent Ductile Damage Model for Finite Strain Plasticity
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
33
), pp.
4617
4634
.
30.
Hamelin
,
C. J.
,
Diak
,
B. J.
, and
Pilkey
,
A. K.
,
2011
, “
Multiscale Modelling of the Induced Plastic Anisotropy in BCC Metals
,”
Int. J. Plast.
,
27
(
8
), pp.
1185
1202
.
31.
Knezevic
,
M.
,
McCabe
,
R. J.
,
Lebensohn
,
R. A.
,
Tomé
,
C. N.
,
Liu
,
C.
,
Lovato
,
M. L.
, and
Mihaila
,
B.
,
2013
, “
Integration of Self-Consistent Polycrystal Plasticity With Dislocation Density Based Hardening Laws Within an Implicit Finite Element Framework: Application to Low-Symmetry Metals
,”
J. Mech. Phys. Solids
,
61
(
10
), pp.
2034
2046
.
32.
“Swanson Analysis Systems Revision 15,” ANSYS.
33.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2005
, “
On the Cut-Off Value of Negative Triaxiality for Fracture
,”
Eng. Fract. Mech.
,
72
(
7
), pp.
1049
1069
.
34.
Anderson
,
D.
,
Winkler
,
S.
,
Bardelcik
,
A.
, and
Worswick
,
M. J.
,
2014
, “
Influence of Stress Triaxiality and Strain Rate on the Failure Behavior of a Dual-Phase DP780 Steel
,”
Mater. Des.
,
60
, pp.
198
207
.
35.
Toker
,
S. M.
,
Canadinc
,
D.
,
Taube
,
A.
,
Gerstein
,
G.
, and
Maier
,
H. J.
,
2014
, “
On the Role of Slip–Twin Interactions on the Impact Behavior of High-Manganese Austenitic Steels
,”
Mater. Sci. Eng. A
,
593
, pp.
120
126
.
36.
Lee
,
W. S.
, and
Chen
,
T. H.
,
2002
, “
Plastic Deformation and Fracture Characteristics of Hadfield Steel Subjected to High-Velocity Impact Loading
,”
Proc. Inst. Mech. Eng., Part C
,
216
(
10
), pp.
971
982
.
37.
Yang
,
E. E.
,
2010
, “
The Effect of Carbon Content on the Mechanical Properties and Microstructural Evolution of Fe-22Mn-C TWIP/TRIP Steels
,”
Dissertation, McMasters University
.
38.
LS-DYNA Support
,
2016
, “
Hourglass
,”
DYNAmore, Stuttgart
,
Germany
, http://www.dynasupport.com/howtos/element/hourglass
39.
Onal
,
O.
,
Bal
,
B.
,
Toker
,
S.
,
Mirzajanzadeh
,
M.
,
Canadinc
,
D.
, and
Maier
,
H. J.
,
2014
, “
Microstructure-Based Modeling of the Impact Response of a Biomedical Niobium–Zirconium Alloy
,”
J. Mater. Res.
,
29
(
10
), pp.
1123
1134
.
40.
Canadinc
,
D.
,
Sehitoglu
,
H.
,
Maier
,
H. J.
, and
Chumlyakov
,
Y. I.
,
2005
, “
Strain Hardening Behavior of Aluminum Alloyed Hadfield Steel Single Crystals
,”
Acta Mater.
,
53
(
6
), pp.
1831
1842
.
41.
Canadinc
,
D.
,
Biyikli
,
E.
,
Niendorf
,
T.
, and
Maier
,
H. J.
,
2011
, “
Experimental and Numerical Investigation of the Role of Grain Boundary Misorientation Angle on the Dislocation–Grain Boundary Interactions
,”
Adv. Eng. Mater.
,
13
(
4
), pp.
281
287
.
42.
Canadinc
,
D.
,
Sehitoglu
,
H.
,
Maier
,
H. J.
, and
Kurath
,
P.
,
2008
, “
On the Incorporation of Length Scales Associated With Pearlitic and Bainitic Microstructures Into a Visco-Plastic Self-Consistent Model
,”
Mater. Sci. Eng. A
,
485
(
1
), pp.
258
271
.
43.
Kocks
,
U. F.
,
Tome
,
C. N.
, and
Wenk
,
H. R.
,
1998
,
Texture and Anisotropy. Preferred Orientations in Polycrystals and Their Effect on Material Properties
,
Cambridge University
,
Cambridge, UK
.
You do not currently have access to this content.