Many mathematical models based on the advanced theory of bending to predict bending characteristics for monolithic sheet materials are available in the literature. In this work, a similar approach is utilized to develop bending models for a bilayer laminated sheet material. The principal stresses and strains through the thickness and change in relative thickness, at specified bend curvatures, are obtained as a function of increasing curvature during bending. Additionally, three-dimensional (3D) finite element (FE) based models for bilayer laminate bending are developed to overcome simplifications of the analytical models. In order to experimentally validate the two models, a new experimental bend test-jig is developed and experiments are performed on bilayer steel–aluminum laminate for different clad to matrix thickness ratios. These experiments have enabled continuous measurements of strain along the width at the bend line and through the laminate thickness at one of the specimen edges using an online strain mapping system based on digital image correlation (DIC) method. Analytical model results indicate how the through-thickness strain distribution and relative thickness of the specimen in bending are influenced by the location and thickness of the soft clad material. The FE model and experimental results exhibit similar trends in the relative thickness change for different geometric arrangements of steel–aluminum layers. The tangential and radial stresses decrease in magnitude with increasing aluminum clad thickness ratios. The 3D FE model of laminate bending provided strain predictions across the specimen width at the bend line on the tension and compression sides that increased with increasing clad thickness ratios. Also, relative thickness data from the 3D FE model showed uniaxial and plane strain stress states at the edge and midwidth sections of the test specimen. The results from analytical and FE models and from DIC and microscopic thickness measurements indicate that thickness at the bend line increases with increasing clad thickness for the case of clad layer on the compressive side of the laminate (i.e., C-C case) and vice versa for clad layer on the tensile side (C-T).

References

1.
Lesuer
,
D.
,
Syn
,
C.
,
Sherby
,
O.
,
Wadsworth
,
J.
,
Lewandowski
,
J.
, and
Hunt
,
W. H.
,
1996
, “
Mechanical Behaviour of Laminated Metal Composites
,”
Int. Mater. Rev.
,
41
(
5
), pp.
169
197
.
2.
Gupta
,
A.
,
Lee
,
S.
, and
Wagstaff
,
R.
,
2007
, “
Direct Chill Casting of Aluminium–Manganese Against Aluminium–Silicon Layer Via Novelis Fusion Process
,”
Mater. Technol.
,
22
(
2
), pp.
71
75
.
3.
Kawase
,
H.
,
Makimoto
,
M.
,
Takagi
,
K.
,
Ishida
,
Y.
, and
Tanaka
,
T.
,
1983
, “
Development of Aluminum-Clad Steel Sheet by Roll-Bonding
,”
Trans. ISIJ
,
23
(
7
), pp.
628
632
.
4.
Liu
,
J.
,
Li
,
M.
,
Sheu
,
S.
, and
Karabin
,
M.
,
2008
, “
Macro- and Micro-Surface Engineering to Improve Hot Roll Bonding of Aluminum Plate and Sheet
,”
Mater. Sci. Eng. A
,
479
(
1–2
), pp.
45
57
.
5.
Wright
,
R.
, and
Hawkins
,
J.
,
1971
, “
Mechanical Properties and Press Formability of Copper/Mild Steel Sandwich Sheet Materials
,”
J. Inst. Met.
,
99
, pp.
357
371
.
6.
Ludwik
,
P.
,
1903
, “
Engineering Study of Sheet Bending
,”
Technische Blätter
, Vol.
35
,
Verlag des Deutschen Polytechnischen Vereins
,
Böhmen, Czech Republic
, pp.
133
159
.
7.
Proksa
,
F.
,
1959
, “
Plastisches Biegen von Blechen
,”
Der Stahlbau
,
28
, pp.
29
36
.
8.
Crafoord
,
R.
,
1967
, “
The Mechanism of Forming in Bending
,”
Ann. CIRP
,
15
, pp.
253
261
.
9.
Dadras
,
P.
, and
Majlessi
,
S.
,
1982
, “
Plastic Bending of Work Hardening Materials
,”
ASME J. Eng. Ind.
,
104
(
3
), pp.
224
230
.
10.
Tan
,
Z.
,
Persson
,
B.
, and
Magnusson
,
C.
,
1995
, “
Plastic Bending of Anisotropic Sheet Metals
,”
Int. J. Mech. Sci.
,
37
(
4
), pp.
405
421
.
11.
Wang
,
C.
,
Kinzel
,
G.
, and
Altan
,
T.
,
1993
, “
Mathematical Modeling of Plane Strain Bending of Sheet and Plate
,”
J. Mater. Process. Technol.
,
39
(
3–4
), pp.
273
304
.
12.
Heller
,
B.
, and
Kleiner
,
M.
,
2006
, “
Semi-Analytical Process Modelling and Simulation of Air Bending
,”
J. Strain Anal.
,
41
(
1
), pp.
57
80
.
13.
Gao
,
X. L.
,
1994
, “
Finite Deformation Elasto-Plastic Solution for the Pure Bending Problem of a Wide Plate of Elastic Linear-Hardening Material
,”
Int. J. Solids Struct.
,
31
(
10
), pp.
1357
1376
.
14.
Chakrabarty
,
J.
,
Lee
,
W. B.
, and
Chan
,
K. C.
,
2001
, “
An Exact Solution for the Elastic Plastic Bending of Anisotropic Sheet Metal Under Conditions of Plane Strain
,”
Int. J. Mech. Sci.
,
43
(
8
), pp.
1871
1880
.
15.
Verguts
,
H.
, and
Sowerby
,
R.
,
1975
, “
The Pure Plastic Bending of Laminated Sheet Metals
,”
Int. J. Mech. Sci.
,
17
(
1
), pp.
31
51
.
16.
Majlessi
,
S.
, and
Dadras
,
P.
,
1983
, “
Pure Plastic Bending of Sheet Laminates Under Plane Strain Condition
,”
Int. J. Mech. Sci.
,
25
(
1
), pp.
1
14
.
17.
Yilamu
,
K.
,
Hino
,
R.
,
Hamasaki
,
H.
, and
Yoshida
,
F.
,
2010
, “
Air Bending and Springback of Stainless Steel Clad Aluminum Sheet
,”
J. Mater. Process. Technol.
,
210
(
2
), pp.
272
278
.
18.
Marciniak
,
Z.
, and
Kuczynski
,
K.
,
1979
, “
The Forming Limit Curve for Bending Processes
,”
Int. J. Mech. Sci.
,
21
(
10
), pp.
609
621
.
19.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
London
.
20.
GOM
,
2001
,
Aramis—Deformation Measurement Using the Grating Method
.
User's Manual, V4.7-4.2
,
GOM mbH
,
Braunschweig, Germany
.http://materials-science.phys.rug.nl/index.php/home/downloads/category/8-aramis-3d2d?download=25%3Aaramis-v47
21.
Rajan
,
V.
,
Rossol
,
M.
, and
Zok
,
F.
,
2012
, “
Optimization of Digital Dmage Correlation for High-Resolution Strain Mapping of Ceramic Composites
,”
Exp. Mech.
,
52
(
9
), pp.
1407
1421
.
22.
Amini
,
S.
, and
Kumar
,
R.
,
2014
, “
A High-Fidelity Strain-Mapping Framework Using Digital Image Correlation
,”
Mater. Sci. Eng. A
,
594
, pp.
394
403
.
23.
Davidkov
,
A.
,
Jain
,
M. K.
,
Petrov
,
R. H.
,
Wilkinson
,
D. S.
, and
Mishra
,
R. K.
,
2012
, “
Strain Localization and Damage Development During Bending of Al–Mg Alloy Sheets
,”
Mater. Sci. Eng. A
,
550
, pp.
395
407
.
You do not currently have access to this content.