Improving yield strength and asymmetry is critical to expand applications of magnesium alloys in industry for higher fuel efficiency and lower CO2 production. Grain refinement is an efficient method for strengthening low symmetry magnesium alloys, achievable by precipitate refinement. This study provides guidance on how precipitate engineering will improve mechanical properties through grain refinement. Precipitate refinement for improving yield strengths and asymmetry is simulated quantitatively by coupling a stochastic second phase grain refinement model and a modified polycrystalline crystal viscoplasticity φ-model. Using the stochastic second phase grain refinement model, grain size is quantitatively determined from the precipitate size and volume fraction. Yield strengths, yield asymmetry, and deformation behavior are calculated from the modified φ-model. If the precipitate shape and size remain constant, grain size decreases with increasing precipitate volume fraction. If the precipitate volume fraction is kept constant, grain size decreases with decreasing precipitate size during precipitate refinement. Yield strengths increase and asymmetry approves to one with decreasing grain size, contributed by increasing precipitate volume fraction or decreasing precipitate size.

References

1.
Joost
,
W. J.
,
2012
, “
Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering
,”
JOM
,
64
(
9
), pp.
1032
1038
.
2.
Li
,
D.
,
Garmestani
,
H.
, and
Adams
,
B.
,
2005
, “
A Texture Evolution Model in Cubic-Orthotropic Polycrystalline System
,”
Int. J. Plast.
,
21
(
8
), pp.
1591
1617
.
3.
Li
,
D.
,
Garmestani
,
H.
, and
Ahzi
,
S.
,
2007
, “
Processing Path Optimization to Achieve Desired Texture in Polycrystalline Materials
,”
Acta Mater.
,
55
(
2
), pp.
647
654
.
4.
Kulekci
,
M. K.
,
2008
, “
Magnesium and Its Alloys Applications in Automotive Industry
,”
Int. J. Adv. Manuf. Technol.
,
39
(
9–10
), pp.
851
865
.
5.
Rokhlin
,
L. L.
,
2003
,
Magnesium Alloys Containing Rare Earth Metals: Structure and Properties
,
Taylor & Francis
,
New York
.
6.
Nie
,
J.-F.
,
2012
, “
Precipitation and Hardening in Magnesium Alloys
,”
Metall. Mater. Trans. A
,
43
(
11
), pp.
3891
3939
.
7.
Jiang
,
B.
,
Liu
,
W.
,
Chen
,
S.
,
Yang
,
Q.
, and
Pan
,
F.
,
2011
, “
Mechanical Properties and Microstructure of As-Extruded AZ31 Mg Alloy at High Temperatures
,”
Mater. Sci. Eng.: A
,
530
(
1
), pp.
51
56
.
8.
Zhu
,
S.
,
Gibson
,
M.
,
Easton
,
M.
, and
Nie
,
J.
,
2010
, “
The Relationship Between Microstructure and Creep Resistance in Die-Cast Magnesium–Rare Earth Alloys
,”
Scr. Mater.
,
63
(
7
), pp.
698
703
.
9.
Estrin
,
Y.
, and
Vinogradov
,
A.
,
2013
, “
Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science
,”
Acta Mater.
,
61
(
3
), pp.
782
817
.
10.
Huang
,
Y.
, and
Langdon
,
T. G.
,
2013
, “
Advances in Ultrafine-Grained Materials
,”
Mater. Today
,
16
(
3
), pp.
85
93
.
11.
Commin
,
L.
,
Dumont
,
M.
,
Masse
,
J.-E.
, and
Barrallier
,
L.
,
2009
, “
Friction Stir Welding of AZ31 Magnesium Alloy Rolled Sheets: Influence of Processing Parameters
,”
Acta Mater.
,
57
(
2
), pp.
326
334
.
12.
Li
,
D.
,
Sun
,
X.
, and
Khaleel
,
M. A.
,
2012
, “
Materials Design of All-Cellulose Composite Using Microstructure Based Finite Element Analysis
,”
ASME J. Eng. Mater. Technol.
,
134
(
1
), p.
010911
.
13.
Tschopp
,
M.
,
Wilks
,
G.
, and
Spowart
,
J.
,
2008
, “
Multi-Scale Characterization of Orthotropic Microstructures
,”
Modell. Simul. Mater. Sci. Eng.
,
16
(
6
), p.
065009
.
14.
Xu
,
W.
,
Sun
,
X.
,
Li
,
D.
,
Ryu
,
S.
, and
Khaleel
,
M. A.
,
2013
, “
Mechanism-Based Representative Volume Elements (RVEs) for Predicting Property Degradations in Multiphase Materials
,”
Comput. Mater. Sci.
,
68
, pp.
152
159
.
15.
Li
,
D.
,
Li
,
Y.
,
Hu
,
S.
,
Sun
,
X.
, and
Khaleel
,
M.
,
2012
, “
Predicting Thermal Conductivity Evolution of Polycrystalline Materials Under Irradiation Using Multiscale Approach
,”
Metall. Mater. Trans. A
,
43
(
3
), pp.
1060
1069
.
16.
Baniassadi
,
M.
,
Garmestani
,
H.
,
Li
,
D.
,
Ahzi
,
S.
,
Khaleel
,
M.
, and
Sun
,
X.
,
2011
, “
Three-Phase Solid Oxide Fuel Cell Anode Microstructure Realization Using Two-Point Correlation Functions
,”
Acta Mater.
,
59
(
1
), pp.
30
43
.
17.
Yin
,
D. L.
,
Wang
,
J. T.
,
Liu
,
J. Q.
, and
Zhao
,
X.
,
2009
, “
On Tension–Compression Yield Asymmetry in an Extruded Mg–3Al–1Zn Alloy
,”
J. Alloys Compd.
,
478
(
1
), pp.
789
795
.
18.
Park
,
S.
,
You
,
B.
, and
Yoon
,
D.
,
2009
, “
Effect of the Extrusion Conditions on the Texture and Mechanical Properties of Indirect-Extruded Mg–3Al–1Zn Alloy
,”
J. Mater. Process. Technol.
,
209
(
18
), pp.
5940
5943
.
19.
Jain
,
A.
,
Duygulu
,
O.
,
Brown
,
D.
,
Tomé
,
C.
, and
Agnew
,
S.
,
2008
, “
Grain Size Effects on the Tensile Properties and Deformation Mechanisms of a Magnesium Alloy, AZ31B, Sheet
,”
Mater. Sci. Eng.: A
,
486
(
1
), pp.
545
555
.
20.
Barnett
,
M.
,
Keshavarz
,
Z.
,
Beer
,
A.
, and
Atwell
,
D.
,
2004
, “
Influence of Grain Size on the Compressive Deformation of Wrought Mg–3Al–1Zn
,”
Acta Mater.
,
52
(
17
), pp.
5093
5103
.
21.
Li
,
D.
,
Joshi
,
V.
,
Lavender
,
C.
,
Khaleel
,
M.
, and
Ahzi
,
S.
,
2013
, “
Yield Asymmetry Design of Magnesium Alloys by Integrated Computational Materials Engineering
,”
Comput. Mater. Sci.
,
79
, pp.
448
455
.
22.
Li
,
D.
,
Ahzi
,
S.
,
M’Guil
,
S.
,
Wen
,
W.
,
Lavender
,
C.
, and
Khaleel
,
M. A.
,
2014
, “Modeling of Deformation Behavior and Texture Evolution in Magnesium Alloy Using the Intermediate ϕ-Model,”
Int. J. Plast.
,
52
(
1
), pp.
77
94
.
You do not currently have access to this content.