A microstructure-based fatigue model is employed to predict fatigue damage in 4140 steel. Fully reversed, strain control fatigue tests were conducted at various strain amplitudes and scanning electron microscopy was employed to establish structure-property relations between the microstructure and cyclic damage. Fatigue cracks were found to initiate from particles near the free surface of the specimens. In addition, fatigue striations were found to originate from these particles and grew radially outward. The fatigue model used in this study captured the microstructural effects and mechanics of nucleation and growth observed in this ferrous metal. Good correlation of the number of cycles to failure between the experimental results and the model were achieved. Based on analysis of the mechanical testing, fractography and modeling, the fatigue life of the 4140 steel is estimated to comprise mainly of small crack growth in the low cycle regime and crack incubation in the high cycle fatigue regime.

References

1.
Suresh
,
S.
,
1998
,
Fatigue of Materials
,
Cambridge University Press
,
New York
.
2.
McDowell
,
D. L.
,
Gall
,
K.
,
Horstemeyer
,
M. F.
, and
Fan
,
J.
,
2003
, β€œ
Microstructure-Based Fatigue Modeling of Cast A356-T6 Alloy
,”
Eng. Fract. Mech.
,
70
, pp.
49
–
80
.10.1016/S0013-7944(02)00021-8
3.
Jordon
,
J. B.
,
Horstemeyer
,
M. F.
,
Yang
,
N.
,
Major
,
J. F.
,
Gall
,
K.
,
Fan
,
J.
, and
McDowell
,
D. L.
,
2010
, β€œ
Microstructural Inclusion Influence on Fatigue of a Cast A356 Aluminum Alloy
,”
Metall. Mater. Trans. A
,
41
(
2
), pp.
356
–
363
.10.1007/s11661-009-0088-7
4.
Xue
,
Y.
,
El Kadiri
,
H.
,
Horstemeyer
,
M. F.
,
Jordon
,
J. B.
, and
Weiland
,
H.
,
2007
, β€œ
Micromechanisms of Multistage Crack Growth in a High-Strength Aluminum Alloy
,”
Acta Mater.
,
55
(
6
), pp.
1975
–
1984
.10.1016/j.actamat.2006.11.009
5.
Xue
,
Y.
,
McDowell
,
D. L.
,
Horstemeyer
,
M. F.
,
Dale
,
M.
, and
Jordon
,
J. B.
,
2007
, β€œ
Microstructure-Based Multistage Fatigue Modeling of Aluminum Alloy 7075-T651
,”
Eng. Fract. Mech.
,
74
, pp.
2810
–
2823
.10.1016/j.engfracmech.2006.12.031
6.
Xue
,
Y.
,
Horstemeyer
,
M. F.
,
McDowell
,
D.
,
El Kadiri
,
H.
, and
Fan
,
J.
,
2007
, β€œ
Microstructure-Based Multistage Fatigue Modeling of a Cast AE44 Magnesium Alloy
,”
Int. J. Fatigue
,
29
, pp.
666
–
676
.10.1016/j.ijfatigue.2006.07.005
7.
Jordon
,
J. B.
,
Gibson
,
J. B.
,
Horstemeyer
,
M. F.
,
Kadiri
,
H. E.
,
Baird
,
J. C.
, and
Luo
,
A. A.
,
2011
, β€œ
Effect of Twinning, Slip, and Inclusions on the Fatigue Anisotropy of Extrusion-Textured AZ61 Magnesium Alloy
,”
Mater. Sci. Eng. A
,
528
(
22
), pp.
6860
–
6871
.10.1016/j.msea.2011.05.047
8.
Rettberg
,
L. H.
,
Jordon
,
J. B.
,
Horstemeyer
,
M. F.
, and
Jones
,
J. W.
,
2012
, β€œ
Low-Cycle Fatigue Behavior of Die-Cast Mg Alloys AZ91 and AM60
,”
Metall. Mater. Trans. A
,
43
(
7
), pp.
2260
–
2274
.10.1007/s11661-012-1114-8
9.
Lugo
,
M.
,
Jordon
,
J. B.
,
Solanki
,
K. N.
,
Hector
,
L. G.
, Jr.
,
Bernard
,
J. D.
,
Luo
,
A. A.
, and
Horstemeyer
,
M. F.
,
2013
, β€œ
Role of Different Material Processing Methods on the Fatigue Behavior of AZ31 Magnesium Alloy
,”
Int. J. Fatigue
,
52
, pp.
131
–
143
.10.1016/j.ijfatigue.2013.02.017
10.
Xue
,
Y.
,
Pascu
,
A.
,
Horstemeyer
,
M. F.
,
Wang
,
L.
, and
Wang
,
P. T.
,
2010
, β€œ
Microporosity Effects on Cyclic Plasticity and Fatigue of LENSβ„’-Processed Steel
,”
Acta Mater.
,
58
(
11
), pp.
4029
–
4038
.10.1016/j.actamat.2010.03.014
11.
Celik
,
A.
, and
Karadeniz
,
S.
,
1995
, β€œ
Improvement of the Fatigue Strength of AISI 4140 Steel by an Ion Nitriding Process
,”
Surf. Coat. Technol.
,
72
(
3
), pp.
169
–
173
.10.1016/0257-8972(94)02348-4
12.
Limodin
,
N.
, and
Verreman
,
Y.
,
2006
, β€œ
Fatigue Strength Improvement of a 4140 Steel by Gas Nitriding: Influence of Notch Severity
,”
Mater. Sci. Eng. A
,
435–436
, pp.
460
–
467
.10.1016/j.msea.2006.07.034
13.
Thielen
,
P. N.
, and
Fine
,
M. E.
,
1975
, β€œ
Fatigue Crack Propagation in 4140 Steel
,”
Metall. Trans. A
,
6
, pp.
2133
–
2140
.10.1007/BF03161840
14.
Thielen
,
P. N.
,
Fine
,
M. E.
, and
Fournelle
,
R. A.
,
1976
, β€œ
Cyclic Stress Strain Relations and Strain-Controlled Fatigue of 4140 Steel
,”
Acta Metall.
,
24
(1), pp.
1
–
10
.10.1016/0001-6160(76)90140-1
15.
Steiner
,
R.
,
1990
,
ASM Handbook
, Vol. 1: Properties and Selection; Irons, Steels, and High Performance Alloys,
ASM International
,
Materials Park, OH
, p.
140
.
16.
Begum
,
S.
,
Chen
,
D. L.
,
Xu
,
S.
, and
Luo Alan
A.
,
2008
, β€œ
Strain-Controlled Low-Cycle Fatigue Properties of a Newly Developed Extruded Magnesium Alloy
,”
Metall. Mater. Trans. A
,
39
, pp.
3014
–
3026
.10.1007/s11661-008-9677-0
17.
Horstemeyer
,
M. F.
,
2012
,
Integrated Computational Materials Engineering (ICME) for Metals: Reinvigorating Engineering Design With Science
,
Wiley Press
,
Hoboken, NJ
.
18.
Hayhurst
,
D. R.
,
Leckie
F. A.
, and
McDowell
,
D. L.
,
1985
, β€œ
Damage Growth Under Nonproportional Loading
,” ASTM, Philadelphia, Paper No. ASTM STP 853, pp.
688
–
699
.
19.
Jordon
,
J. B.
,
Horstemeyer
,
M. F.
,
Solanki
,
K.
, and
Xue
,
Y.
,
2007
, β€œ
Damage and Stress State Influence on the Bauschinger Effect in Aluminum Alloys
,”
Mech. Mater.
,
39
(
10
), pp.
920
–
931
.10.1016/j.mechmat.2007.03.004
20.
Peeters
,
B.
,
Seefeldt
,
M.
,
Teodosiu
,
C.
,
Kalidindi
,
S. R.
,
Van Houtte
,
P.
, and
Aernoudt
,
E.
,
2001
, β€œ
Work-Hardening/Softening Behaviour of BCC Polycrystals During Changing Strain Paths: I. An Integrated Model Based on Substructure and Texture Evolution, and Its Prediction of the Stress–Strain Behaviour of an IF Steel During Two-Stage Strain Paths
,”
Acta Mater.
,
49
(
9
), pp.
1607
–
1619
.10.1016/S1359-6454(01)00066-0
21.
Bammann
,
D. J.
, and
Aifantis
,
E. C.
,
1987
, β€œ
A Model for Finite-Deformation Plasticity
,”
Acta Mech
,
69
, pp.
97
–
117
.10.1007/BF01175716
22.
Bammann
,
D. J.
, and
Aifantis
,
E. C.
,
1989
, β€œ
A Damage Model for Ductile Metals
,”
Nucl. Eng. Des.
,
116
, pp.
355
–
362
.10.1016/0029-5493(89)90095-2
23.
Bammann
,
D. J.
,
Chiesa
,
M. L.
,
Horstemeyer
,
M. F.
, and
Weingarten
,
L. I.
,
1993
, β€œ
Failure in Ductile Materials Using Finite Element Methods
,”
Structural Crashworthiness and Failure
,
Elsevier Applied Science
, London, Chap. 1.
24.
Bammann
,
D. J.
,
Chiesa
,
M. L.
, and
Johnson
,
G. C.
,
1996
, β€œ
Modeling Large Deformation and Failure in Manufacturing Processes
,”
Theoretical and Applied Mechanics
,
Tatsumi
,
Wannabe
, and
Kambe
, eds.,
Elsevier Science
, London, pp.
359
–
376
.
25.
Horstemeyer.
M. F.
, and
Gokhale
,
A. M.
,
1999
, β€œ
A Void-Crack Nucleation Model for Ductile Metals
,”
Int. J. Solids Struct.
,
36
, pp.
5029
–
5055
.10.1016/S0020-7683(98)00239-X
26.
Horstemeyer
,
M. F.
,
Lathrop.
J.
,
Gokhale.
A. M.
, and
Dighe
,
M.
,
2000
, β€œ
Modeling Stress State Dependent Damage Evolution in a Cast Al-Si-Mg Aluminum Alloy
,”
Theor. Appl. Fract. Mech.
,
33
, pp.
31
–
47
.10.1016/S0167-8442(99)00049-X
27.
Jordon
,
J. B.
,
Horstemeyer
,
M. F.
,
Bernard
,
J. D.
,
Solanki
,
K.
, and
Berry
,
J. T.
,
2009
, β€œ
Damage Characterization and Modeling of a 7075-T651 Aluminum Plate
,”
Mater. Sci. Eng. A
,
527
(
1–2
), pp.
169
–
178
.10.1016/j.msea.2009.07.049
You do not currently have access to this content.