A parametric study is carried out to shed light on the elastoplastic behavior of a nanowire under lithiation. The Li-ion diffusivity is assumed to be significantly higher at near-saturation than at dilute concentration. It leads to the prediction of an Li-ion diffusion jam and consequently a topologically steep step moving along the wire. The analysis shows that the different plastic flow rates due to the different constraint conditions along the longitudinal and radial directions result in apparent anisotropic volume expansion. Either lower yield strength, smaller strain hardening ratio, or higher charging rate would cause greater swelling anisotropy. The numerical results are compared with the experimental observation of an SnO2 nanowire (Huang et al., 2011, “In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode,” Science, 330, pp. 1515–1520) to suggest its elastoplastic properties under lithiation.

References

1.
Tao
,
Z.
,
Wang
,
H.
, and
Chen
,
J.
, 2011, “
Si-Based Materials as the Anode of Lithium-Ion Batteries
,”
Prog. Chem.
,
23
(
2–3
), pp.
318
327
.
2.
Zhang
,
W.-J.
, 2011, “
A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries
,”
J. Power Sources
,
196
(
1
), pp.
13
24
.
3.
Derrien
,
G.
,
Hassoun
,
J.
,
Panero
,
S.
, and
Scrosati
,
B.
, 2007, “
Nanostructured Sn--C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries
,”
Adv. Mater.
,
19
(
17
), pp.
2336
2340
.
4.
Li
,
N.
, and
Martin
,
C. R.
, 2001, “
A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis
,”
J. Electrochem. Soc.
,
148
(
2
), pp.
A164
A170
.
5.
Idota
,
Y.
,
Kubota
,
T.
,
Maekawa
,
Y.
,
Matsufuji
,
A.
, and
Miyasaka
,
T.
, 1997, “
Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material
,”
Science
,
276
(
5317
), pp.
1395
1397
.
6.
Green
,
M.
,
Fielder
,
E.
,
Scrosati
,
B.
,
Wachtler
,
M.
, and
Moreno
,
J. S.
, 2003, “
Structured Silicon Anodes for Lithium Battery Applications
,”
Electrochem. Solid-State Lett.
,
6
(
5
), pp.
A75
A79
.
7.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
, 2007, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
.
8.
Park
,
M. H.
,
Kim
,
M. G.
,
Joo
,
J.
,
Kim
,
K.
,
Kim
,
J.
,
Ahn
,
S.
,
Cui
,
Y.
, and
Cho
,
J.
, 2009, “
Silicon Nanotube Battery Anodes
,”
Nano Lett.
,
9
(
11
), pp.
3844
3847
.
9.
He
,
Y.
,
Fan
,
J. G.
, and
Zhao
,
Y. P.
, 2010, “
Engineering a Well-Aligned Composition-Graded CuSi Nanorod Array by an Oblique Angle Codeposition Technique
,”
Crystal Growth Des.
,
10
(
11
), pp.
4954
4958
.
10.
Zhu
,
T.
, and
Li
,
J.
, 2010, “
Ultra-Strength Materials
,”
Prog. Mater. Sci.
,
55
(
7
), pp.
710
757
.
11.
Östlund
,
F.
,
Rzepiejewska-Malyska
,
K.
,
Leifer
,
K.
,
Hale
,
L. M.
,
Tang
,
Y.
,
Ballarini
,
R.
,
Gerberich
,
W. W.
, and
Michler
,
J.
, 2009, “
Brittle-to-Ductile Transition in Uniaxial Compression of Silicon Pillars at Room Temperature
,”
Adv. Funct. Mater.
,
19
(
15
), pp.
2439
2444
.
12.
Han
,
X. D.
,
Zheng
,
K.
,
Zhang
,
Y. F.
,
Zhang
,
X. N.
,
Zhang
,
Z.
, and
Wang
,
Z. L.
, 2007, “
Low-Temperature In-Situ Large-Strain Plasticity of Silicon Nanowires
,”
Adv. Mater.
,
19
(
16
), pp.
2112
2118
.
13.
Zhao
,
K.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
, 2011, “
Inelastic Hosts as Electrodes for High-Capacity Lithium-Ion Batteries
,”
J. Appl. Phys.
,
109
(
1
), p.
016110
.
14.
Liu
,
X. H.
,
Zheng
,
H.
,
Zhong
,
L.
,
Huang
,
S.
,
Karki
,
K.
,
Zhang
,
L. Q.
,
Liu
,
Y.
,
Kushima
,
A.
,
Liang
,
W. T.
,
Wang
,
J. W.
,
Cho
,
J. H.
,
Epstein
,
E.
,
Dayeh
,
S. A.
,
Picraux
,
S. T.
,
Zhu
,
T.
,
Li
,
J.
,
Sullivan
,
J. P.
,
Cumings
,
J.
,
Wang
,
C.
,
Mao
,
S. X.
,
Ye
,
Z. Z.
,
Zhang
,
S.
, and
Huang
,
J. Y.
, 2011, “
Anisotropic Swelling and Fracture of Silicon Nanowires During Lithiation
,”
Nano Lett.
,
11
(
8
), pp.
3312
3318
.
15.
Zhang
,
L. Q.
,
Liu
,
X. H.
,
Liu
,
Y.
,
Huang
,
S.
,
Zhu
,
T.
,
Gui
,
L.
,
Mao
,
S. X.
,
Ye
,
Z. Z.
,
Wang
,
C. M.
,
Sullivan
,
J. P.
, and
Huang
,
J. Y.
, “
Controlling the Lithiation-Induced Strain and Charging Rate in Nanowire Electrodes by Coating
,”
ACS Nano
,
5
(
6
), pp.
4800
4809
.
16.
Huang
,
J. Y.
,
Zhong
,
L.
,
Wang
,
C. M.
,
Sullivan
,
J. P.
,
Xu
,
W.
,
Zhang
,
L. Q.
,
Mao
,
S. X.
,
Hudak
,
N. S.
,
Liu
,
X. H.
,
Subramanian
,
A.
,
Fan
,
H. Y.
,
Qi
,
L. A.
,
Kushima
,
A.
, and
Li
,
J.
, 2010, “
In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode
,”
Science
,
330
(
6010
), pp.
1515
1520
.
17.
Liu
,
X. H.
,
Zhang
,
L. Q.
,
Zhong
,
L.
,
Liu
,
Y.
,
Zheng
,
H.
,
Wang
,
J. W.
,
Cho
,
J. H.
,
Dayeh
,
S. A.
,
Picraux
,
S. T.
,
Sullivan
,
J. P.
,
Mao
,
S. X.
,
Ye
,
Z. Z.
, and
Huang
,
J. Y.
, 2011, “
Ultrafast Electrochemical Lithiation of Individual Si Nanowire Anodes
,”
Nano Lett.
,
11
, pp.
2251
2258
.
18.
Yang
,
B.
,
He
,
Y. P.
, and
Zhao
,
Y. P.
, 2011, “
Hydrogenation of Magnesium Nanoblades: The Effect of Concentration Dependent Hydrogen Diffusion
,”
Appl. Phys. Lett.
,
98
(
8
), p.
081905
.
19.
Yang
,
B.
,
He
,
Y. P.
, and
Zhao
,
Y. P.
, 2011, “
Concentration-Dependent Hydrogen Diffusion in Hydrogenation and Dehydrogenation of Vanadium-Coated Magnesium Nanoblades
,”
Int. J. Hydrogen Energy
,
36
, pp.
15642
15651
.
20.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
, 2001,
Concepts and Applications of Finite Element Analysis
,
John Wiley & Sons, Inc.
,
New York
.
21.
ANSYS, 2009, “
Theory Reference for the Mechanical APDL and Mechanical Applications
,” Release 12.0 ed.
22.
Barth
,
S.
,
Harnagea
,
C.
,
Mathur
,
S.
, and
Rosei
,
F.
, 2009, “
The Elastic Moduli of Oriented Tin Oxide Nanowires
,”
Nanotechnology
,
20
(
11
), p.
115705
.
23.
Li
,
H.
, and
Bradt
,
R. C.
, 1991, “
Knoop Microhardness Anisotropy of Single-Crystal Cassiterite (SnO2)
,”
J. Am. Ceram. Soc.
,
74
(
5
), pp.
1053
1060
.
24.
Shenoy
,
V. B.
,
Johari
,
P.
, and
Qi
,
Y.
, 2010, “
Elastic Softening of Amorphous and Crystalline Li-Si Phases With Increasing Li Concentration: A First-Principles Study
,”
J. Power Sources
,
195
(
19
), pp.
6825
6830
.
25.
Ratchford
,
J. B.
,
Schuster
,
B. E.
,
Crawford
,
B. A.
,
Lundgren
,
C. A.
,
Allen
,
J. L.
, and
Wolfenstine
,
J.
, 2011, “
Young’s Modulus of Polycrystalline Li22Si5
,”
J. Power Sources
,
196
(
18
), pp.
7747
7749
.
You do not currently have access to this content.