The effects of porosity architecture and volume fraction on the homogenized elastic moduli and elastic-plastic response of perforated thin metal sheets are investigated under three fundamental loading modes using an efficient homogenization theory. Steel and aluminum sheets weakened by circular, hexagonal, square, and slotted holes arranged in square and hexagonal arrays subjected to inplane normal and shear loading are considered with porosity volume fractions in the range 0.1–0.6. Substantial variations are observed in the homogenized elastic moduli with porosity shape and array type. The differences are rooted in the stress transfer mechanism around traction-free porosities whose shape and distribution play major roles in altering the local stress fields and thus the homogenized response in the elastic-plastic domain. This response is characterized by four parameters that define different stages of micro- and macrolevel yielding. The variations in these parameters due to porosity architecture and loading direction provide useful data for design purposes under monotonic and cyclic loading.

1.
Koiter
,
W. T.
, 1960, “
Stress Distribution in an Infinite Elastic Sheet With a Doubly-Periodic Set of Equal Holes
,”
Boundary Value Problems in Differential Equations
,
R. E.
Langer
, ed.,
The University of Wisconsin Press
,
Madison
, pp.
191
213
.
2.
Grigolyuk
,
E. I.
,
Kursin
,
L. M.
, and
Fil’shtinskii
,
L. A.
, 1965, “
A Method for the Solution of Doubly-Periodic Problems in the Theory of Elasticity
,”
Prikl. Mekh.
0032-8243,
1
(
1
), pp.
22
31
.
3.
Mejiers
,
P.
, 1967, “
Doubly-Periodic Stress Distributions in Perforated Plates
,” Ph.D. thesis, Technological University, Delft.
4.
Slot
,
T.
, and
O’Donnell
,
W. J.
, 1971, “
Effective Elastic Constants for Thick Perforated Plates With Square and Triangular Penetration Patterns
,”
ASME J. Eng. Ind.
,
93
, pp.
139
144
. 0022-0817
5.
O’Donnell
,
W. J.
, and
Porowski
,
J.
, 1973, “
Yield Surfaces for Perforated Materials
,”
ASME J. Appl. Mech.
,
40
, pp.
263
270
. 0021-8936
6.
Kichko
,
R. D.
,
Badlani
,
M.
,
Spaniel
,
F.
,
O’Donnell
,
W. J.
, and
Porowski
,
J. S.
, 1982, “
Plastic Strain Concentrations in Perforated Structures Subjected to Alternating Loads
,”
ASME J. Pressure Vessel Technol.
0094-9930,
104
, pp.
161
167
.
7.
Baik
,
S. C.
,
Han
,
H. N.
,
Lee
,
S. H.
,
Oh
,
K. H.
, and
Lee
,
D. N.
, 2000, “
Plastic Behaviour of Perforated Sheets With Slot-Type Holes Under Biaxial Stress State
,”
Int. J. Mech. Sci.
0020-7403,
42
, pp.
523
536
.
8.
Drago
,
A. S.
, and
Pindera
,
M. -J.
, 2007, “
Micro-Macromechanical Analysis of Heterogeneous Materials: Macroscopically Homogeneous vs Periodic Microstructures
,”
Compos. Sci. Technol.
0266-3538,
67
(
6
), pp.
1243
1263
.
9.
Sanchez-Palencia
,
E.
, 1980,
Non-Homogeneous Media and Vibration Theory
, Vol.
127
(
Lecture Notes in Physics
),
Springer-Verlag
,
Berlin
.
10.
Suquet
,
P. M.
, 1987,
Elements of Homogenization for Inelastic Solid Mechanics
, Vol.
272
(
Lecture Notes in Physics
),
Springer-Verlag
,
Berlin
, pp.
193
278
.
11.
Moorthy
,
S.
, and
Ghosh
,
S.
, 2000, “
Adaptivity and Convergence in the Voronoi Cell Finite Element Model for Analyzing Heterogeneous Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
185
, pp.
37
74
.
12.
Chaboche
,
J. L.
,
Kanouté
,
P.
, and
Roos
,
A.
, 2005, “
On the Capabilities of Mean-Field Approaches for the Description of Plasticity in Metal Matrix Composites
,”
Int. J. Plast.
0749-6419,
21
(
7
), pp.
1409
1434
.
13.
Bansal
,
Y.
, and
Pindera
,
M-J.
, 2005, “
A Second Look at the Higher-Order Theory for Periodic Multiphase Materials
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
177
195
. See also: NASA CR2004–213043.
14.
Bansal
,
Y.
, and
Pindera
,
M. -J.
, 2006, “
Finite-Volume Direct Averaging Micromechanics of Heterogeneous Materials With Elastic-Plastic Phases
,”
Int. J. Plast.
0749-6419,
22
(
5
), pp.
775
825
.
15.
Pindera
,
M. -J.
, and
Bansal
,
Y.
, 2007, “
On the Micromechanics-Based Simulation of Metal Matrix Composite Response
,”
ASME J. Eng. Mater. Technol.
0094-4289,
129
(
3
), pp.
468
482
.
16.
Bufler
,
H.
, 1971, “
Theory of Elasticity of a Multilayered Medium
,”
J. Elast.
0374-3535,
1
, pp.
125
143
.
17.
Pindera
,
M. -J.
, 1991, “
Local/Global Stiffness Matrix Formulation for Composite Materials and Structures
,”
Composites Eng.
0961-9526,
1
(
2
), pp.
69
83
.
18.
Aboudi
,
J.
,
Pindera
,
M. -J.
, and
Arnold
,
S. M.
, 2003, “
Higher-Order Theory for Periodic Multiphase Materials With Inelastic Phases
,”
Int. J. Plast.
0749-6419,
19
, pp.
805
847
.
19.
Gattu
,
M.
,
Khatam
,
H.
,
Drago
,
A. S.
, and
Pindera
,
M. -J.
, 2008, “
Parametric Finite-Volume Micromechanics of Uniaxial, Continuously-Reinforced Periodic Materials With Elastic Phases
,”
ASME J. Eng. Mater. Technol.
0094-4289,
130
(
3
), p.
031015
.
20.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M. -J.
, 2007, “
Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials. Part I: Analysis
,”
ASME J. Appl. Mech.
0021-8936,
74
(
5
), pp.
935
945
.
21.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M. -J.
, 2007, “
Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials. Part II: Numerical Results
,”
ASME J. Appl. Mech.
0021-8936,
74
(
5
), pp.
946
957
.
22.
Khatam
,
H.
, and
Pindera
,
M. -J.
, 2009, “
Thermo-Elastic Moduli of Periodic Multilayers With Wavy Architectures
,”
Composites, Part B
1359-8368,
40
(
1
), pp.
50
64
.
23.
Khatam
,
H.
, and
Pindera
,
M. -J.
, 2008, “
Parametric Finite-Volume Micromechanics of Periodic Materials With Elastoplastic Phases
,”
Int. J. Plast.
0749-6419, doi:10.1016/j.ijplas.2008.09.003
24.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M. -J.
, 2008, “
Computational Aspects of the Parametric Finite-Volume Theory for Functionally Graded Materials
,”
Comput. Mater. Sci.
0927-0256,
44
, pp.
422
438
.
25.
Brockenbrough
,
J. R.
, and
Suresh
,
S.
, 1990, “
Plastic Deformation of Continuous Fiber-Reinforced Metal-Matrix Composites: Effects of Fiber Shape and Distribution
,”
Scr. Metall. Mater.
0956-716X,
24
, pp.
325
330
.
26.
Brockenbrough
,
J. R.
,
Suresh
,
S.
, and
Wienecke
,
H. A.
, 1991, “
Deformation of Metal-Matrix Composites With Continuous Fibers: Geometric Effects of Fiber Distribution and Shape
,”
Acta Metall. Mater.
0956-7151,
39
(
5
), pp.
735
752
.
27.
Arnold
,
S. M.
,
Pindera
,
M. -J.
, and
Wilt
,
T. E.
, 1996, “
Influence of Fiber Architecture on the Inelastic Response of Metal Matrix Composites
,”
Int. J. Plast.
0749-6419,
12
(
4
), pp.
507
545
.
28.
Mendelson
,
A.
, 1986,
Plasticity: Theory and Application
,
Krieger
,
Malabar, FL
.
29.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
357
372
.
30.
Williams
,
T. O.
, and
Pindera
,
M. -J.
, 1997, “
An Analytical Model for the Inelastic Axial Shear Response of Unidirectional Metal Matrix Composites
,”
Int. J. Plast.
0749-6419,
13
(
3
), pp.
261
289
.
31.
Fedele
,
R.
,
Maier
,
G.
, and
Whelan
,
M.
, 2006, “
Stochastic Calibration of Local Constitutive Models Through Measurements at the Macroscale in Heterogeneous Media
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
4971
4990
. 0045-7825
32.
Williams
,
M. L.
, 1952, “
Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension
,”
ASME J. Appl. Mech.
,
19
, pp.
526
528
. 0021-8936
33.
Helsing
,
J.
, and
Jonsson
,
A.
, 2002, “
On the Computation of Stress Fields on Polygonal Domains With V-Notches
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
, pp.
433
453
.
34.
Seweryn
,
A.
, 2002, “
Modeling of Singular Stress Fields Using Finite Element Method
,”
Int. J. Solids Struct.
,
39
, pp.
4787
4804
. 0020-7683
35.
1993,
IPA Designers, Specifiers and Buyers Handbook for Perforated Metals
,
Industrial Perforators Association
,
Boca Raton, FL
.
You do not currently have access to this content.