An experimental study is presented to (1) quantify the rate-sensitive mechanical response and (2) examine the localized deformation behavior under an applied temperature gradient in the alloy AA 2024. Isothermal flow stresses are obtained at temperatures from 100°C to 495°C and strain rates from 102/s to 105/s using routine compression tests and a novel cyclic test, which expedites the characterization. The material displays two distinct kinetic responses with both being amenable to localization phenomena. The lower temperature/high strain rate regime displays a rate-insensitive yield with Stage III/IV work hardening. At higher temperature/low strain rates, a rate-sensitive response with little work hardening is observed. In order to relate the material constitutive behavior to the development of localized deformation, a temperature gradient test is performed wherein temperature differences of approximately 30°C are enforced between the top and bottom surfaces of a cylindrical compression test specimen. Deformation heterogeneity developed in the two distinct regimes of material response is illustrative of warm and hot working conditions typical of industrial processes, such as rolling.

1.
Wells
,
M. A.
,
Lloyd
,
D. J.
,
Samarasekera
,
I. V.
,
Brimacombe
,
J. K.
, and
Hawbolt
,
E. B.
, 1998, “
Modeling the Microstructural Changes During Hot Tandem Rolling of AA5 XXX Aluminum Alloys: Part III. Overall Model Development and Validation
,”
Metall. Mater. Trans. B
1073-5615,
29
(
3
), pp.
709
719
.
2.
Shangwu
,
X.
,
Xianghua
,
L.
,
Guodong
,
W.
, and
Qiang
,
Z.
, 2000, “
Three-Dimensional Finite Element Simulation of the Vertical-Horizontal Rolling Process in the Width Reduction of Slab
,”
J. Mater. Process. Technol.
0924-0136,
101
(
1–3
), pp.
146
151
.
3.
Ghosh
,
S.
,
Li
,
M.
, and
Gardiner
,
D.
, 2004, “
A Computational and Experimental Study of Cold Rolling of Aluminum Alloys With Edge Cracking
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
1
), pp.
74
82
.
4.
McDonald
,
R. J.
, and
Kurath
,
P.
, 2006, “
Deformation and Life Estimates for a Metal Matrix—Spherical Particulate Subjected to Thermomechanical Loading
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
(
3
), pp.
401
418
.
5.
Dowling
,
N. E.
, 1972, “
Fatigue Failure Predictions for Complicated Stress-Strain Histories
,”
J. Mater.
0022-2453,
7
(
1
), pp.
71
87
.
6.
McDonald
,
R. J.
, 2002,
Thermo-Mechanical Behavior of a Ceramic Particulate in a Cast Aluminum Matrix
,
University of Illinois at Urbana-Champaign
,
Urbana, IL
.
7.
Bange
,
M. E.
,
Beaudoin
,
A. J.
,
Stout
,
M. G.
,
Chen
,
S. R.
, and
MacEwen
,
S. R.
, 2000, “
Predictive Modeling of the Nonuniform Deformation of the Aluminum Alloy 5182
,”
ASME J. Eng. Mater. Technol.
0094-4289,
122
, pp.
149
156
.
8.
Kocks
,
U. F.
, and
Mecking
,
H.
, 2003, “
Physics and Phenomenology of Strain Hardening: The FCC Case
,”
Prog. Mater. Sci.
0079-6425,
48
(
3
), pp.
171
273
.
9.
Kok
,
S.
,
Beaudoin
,
A. J.
, and
Tortorelli
,
D. A.
, 2002, “
On the Development of Stage IV Hardening Using a Model Based on the Mechanical Threshold
,”
Acta Mater.
,
50
(
7
), pp.
1653
1667
. 1359-6454
10.
Acharya
,
A.
, and
Beaudoin
,
A. J.
, 2000, “
Grain-Size Effect in Viscoplastic Polycrystals at Moderate Strains
,”
J. Mech. Phys. Solids
0022-5096,
48
(
10
), pp.
2213
2230
.
11.
Beaudoin
,
A. J.
,
Acharya
,
A.
,
Chen
,
S. R.
,
Korzekwa
,
D. A.
, and
Stout
,
M. G.
, 2000, “
Consideration of Grain-Size Effect and Kinetics in the Plastic Deformation of Metal Polycrystals
,”
Acta Mater.
1359-6454,
48
(
13
), pp.
3409
3423
.
12.
Kocks
,
U. F.
, 1982, “
Strain Hardening and ‘Strain-Rate Hardening’
,” Special Technical Publication 765, American Society for Testing and Materials, Philadelphia, PA, pp.
121
138
.
13.
Hosford
,
W. F.
, 2005,
Mechanical Behavior of Materials
,
Cambridge University Press
,
Cambridge
.
14.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
, 1998,
Computational Inelasticity
,
Springer
,
New York
.
15.
Fields
,
J. D. S.
, and
Backofen
,
W. A.
, 1959, “
Temperature and Rate Dependence of Strain Hardening in Aluminum Alloy 2024-0
,”
Trans. Am. Soc. Met.
0096-7416,
51
, pp.
946
960
.
16.
Charpentier
,
P. L.
,
Stone
,
B. C.
,
Ernst
,
S. C.
, and
Thomas
,
J. F.
, Jr.
, 1986, “
Characterization and Modeling of the High Temperature Flow Behavior of Aluminum Alloy 2024
,”
Metall. Trans. A
0360-2133,
17A
(
12
), pp.
2227
2237
.
17.
McLellan
,
D. L.
, 1967, “
Constitutive Equations for Mechanical Properties of Structural Materials
,”
AIAA J.
,
5
(
3
), pp.
446
450
. 0001-1452
18.
Semiatin
,
S. L.
, 2007, private communication.
19.
Curtin
,
W. A.
,
Olmsted
,
D. L.
, and
Hector
,
L. G.
, 2006, “
A Predictive Mechanism for Dynamic Strain Ageing in Aluminium-Magnesium Alloys
,”
Nature Mater.
1476-1122,
5
(
11
), pp.
875
880
.
20.
Kocks
,
U.
,
Argon
,
A.
, and
Ashby
,
M.
, 1975, “
Thermodynamics and Kinetics of Slip
,”
Prog. Mater. Sci.
0079-6425,
19
, pp.
1
291
.
21.
Kocks
,
U. F.
, 1976, “
Laws for Work-Hardening and Low-Temperature Creep
,”
ASME J. Eng. Mater. Technol.
,
98
(
1
), pp.
76
85
. 0079-6425
22.
Mecking
,
H.
, 1977, “
Description of Hardening Curves of fcc Single and Polycrystals
,”
Work Hardening in Tension and Fatigue
,
A. W.
Thomson
, ed.,
TMS-AIME
,
New York
, p.
67
.
23.
Mecking
,
H.
, and
Kocks
,
U. F.
, 1981, “
Kinetics of Flow and Strain-Hardening
,”
Acta Metall.
0001-6160,
29
(
11
), pp.
1865
1875
.
You do not currently have access to this content.