In order to test new theories for residual stress measurement or to test the effects of residual stress on fatigue, fracture, and stress corrosion cracking, a known stress test specimen was designed and then fabricated, modeled, and experimentally validated. To provide a unique biaxial stress state, a 60 mm diameter 10 mm thick disk of 316L stainless steel was plastically compressed through the thickness with an opposing 15 mm diameter hard steel indenters in the center of the disk. For validation, the stresses in the specimen were first mapped using time-of-flight neutron diffraction and Rietveld full pattern analysis. Next, the hoop stresses were mapped on a cross section of two disks using the contour method. The contour results were very repeatable and agreed well with the neutron results. The indentation process was modeled using the finite element method. Because of a significant Bauschinger effect, accurate modeling required testing the cyclic behavior of the steel and then modeling it using a Chaboche-type combined hardening law. The model results agreed very well with the measurements. The duplicate contour measurements demonstrated stress repeatability better than 0.01% of the elastic modulus and allowed discussion of implications of measurements of parts with complicated geometries.

1.
Withers
,
P. J.
, 2007, “
Residual Stress and Its Role in Failure
,”
Rep. Prog. Phys.
0034-4885,
70
(
12
), pp.
2211
2264
.
2.
Hill
,
M. R.
,
DeWald
,
A. T.
,
Rankin
,
J. E.
, and
Lee
,
M. J.
, 2005, “
Measurement of Laser Peening Residual Stresses
,”
Mater. Sci. Technol.
0267-0836,
21
(
1
), pp.
3
9
.
3.
Hatamleh
,
O.
,
Lyons
,
J.
, and
Forman
,
R.
, 2007, “
Laser Peening and Shot Peening Effects on Fatigue Life and Surface Roughness of Friction Stir Welded 7075-T7351 Aluminum
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
30
(
2
), pp.
115
130
.
4.
Woo
,
W.
,
Choo
,
H.
,
Prime
,
M. B.
,
Feng
,
Z.
, and
Clausen
,
B.
, 2008, “
Microstructure, Texture and Residual Stress in a Friction-Stir-Processed Az31b Magnesium Alloy
,”
Acta Mater.
1359-6454,
56
(
8
), pp.
1701
1711
.
5.
Withers
,
P. J.
,
Turski
,
M.
,
Edwards
,
L.
,
Bouchard
,
P. J.
, and
Buttle
,
D. J.
, 2008, “
Recent Advances in Residual Stress Measurement
,”
Int. J. Pressure Vessels Piping
0308-0161,
85
(
3
), pp.
118
127
.
6.
Martineau
,
R. L.
,
Prime
,
M. B.
, and
Duffey
,
T.
, 2004, “
Penetration of HSLA-100 Steel With Tungsten Carbide Spheres at Striking Velocities Between 0.8 and 2.5 km/s
,”
Int. J. Impact Eng.
0734-743X,
30
(
5
), pp.
505
520
.
7.
Prime
,
M. B.
,
Gnäupel-Herold
,
T.
,
Baumann
,
J. A.
,
Lederich
,
R. J.
,
Bowden
,
D. M.
, and
Sebring
,
R. J.
, 2006, “
Residual Stress Measurements in a Thick, Dissimilar Aluminum Alloy Friction Stir Weld
,”
Acta Mater.
1359-6454,
54
(
15
), pp.
4013
4021
.
8.
Kelleher
,
J.
,
Prime
,
M. B.
,
Buttle
,
D.
,
Mummery
,
P. M.
,
Webster
,
P. J.
,
Shackleton
,
J.
, and
Withers
,
P. J.
, 2003, “
The Measurement of Residual Stress in Railway Rails by Diffraction and Other Methods
,”
J. Neutron Res.
1023-8166,
11
(
4
), pp.
187
193
.
9.
DeWald
,
A. T.
, and
Hill
,
M. R.
, 2006, “
Multi-Axial Contour Method for Mapping Residual Stresses in Continuously Processed Bodies
,”
Exp. Mech.
0014-4851,
46
(
4
), pp.
473
490
.
10.
Pagliaro
,
P.
,
Prime
,
M. B.
, and
Zuccarello
,
B.
, 2006, “
Multi Stress Components From Multiple Cuts for the Contour Method
,”
Proceedings of the 35 AIAS Conference
, Universitá Politecnica delle Marche, Ancona, Italy.
11.
Mahmoudi
,
A. H.
,
Stefanescu
,
D.
,
Hossain
,
S.
,
Truman
,
C. E.
,
Smith
,
D. J.
, and
Withers
,
P. J.
, 2006, “
Measurement and Prediction of the Residual Stress Field Generated by Side-Punching
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
(
3
), pp.
451
459
.
12.
Korsunsky
,
A. M.
,
Liu
,
J.
,
Golshan
,
M.
,
Dini
,
D.
,
Zhang
,
S. Y.
, and
Vorster
,
W. J.
, 2006, “
Measurement of Residual Elastic Strains in a Titanium Alloy Using High Energy Synchrotron X-Ray Diffraction
,”
Exp. Mech.
0014-4851,
46
(
4
), pp.
519
529
.
13.
Ezeilo
,
A. N.
, and
Webster
,
G. A.
, 2000, “
Neutron Diffraction Analysis of the Residual Stress Distribution in a Bent Bar
,”
J. Strain Anal. Eng. Des.
0309-3247,
35
(
4
), pp.
235
246
.
14.
Cheng
,
W.
, and
Finnie
,
I.
, 2007,
Residual Stress Measurement and the Slitting Method, Springer Science+Business Media
,
LLC
,
New York
.
15.
Schajer
,
G. S.
, and
Prime
,
M. B.
, 2006, “
Use of Inverse Solutions for Residual Stress Measurements
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
(
3
), pp.
375
382
.
16.
Lemaitre
,
J.
, and
Chaboche
,
J. -L.
, 1990,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge
.
17.
Choteau
,
M.
,
Quaegebeur
,
P.
, and
Degallaix
,
S.
, 2005, “
Modelling of Bauschinger Effect by Various Constitutive Relations Derived From Thermodynamical Formulation
,”
Mech. Mater.
0167-6636,
37
, pp.
1143
1152
.
18.
2006,
ABAQUS User’s Manual, Version 6.6
,
ABAQUS Inc.
,
Pawtucket, RI
.
19.
2006,
ABAQUS Theory Manual Version 6.6
,
ABAQUS Inc.
,
Pawtucket, RI
.
20.
Von Dreele
,
R. B.
, 1997, “
Quantitative Texture Analysis by Rietveld Refinement
,”
J. Appl. Crystallogr.
0021-8898,
30
, pp.
517
525
.
21.
Larson
,
A. C.
, and
Von Dreele
,
R. B.
, 1986, “
General Structure Analysis System (GSAS)
,” Los Alamos National Laboratory, Los Alamos, NM, Tech. Report No. LA-UR-86–748.
22.
Pagliaro
,
P.
, 2008, “
Mapping Multiple Residual Stress Components Using the Contour Method and Superposition
,” Ph.D. thesis, Università degli Studi di Palermo, Palermo, Italy.
23.
Prime
,
M. B.
,
Sebring
,
R. J.
,
Edwards
,
J. M.
,
Hughes
,
D. J.
, and
Webster
,
P. J.
, 2004, “
Laser Surface-Contouring and Spline Data-Smoothing for Residual Stress Measurement
,”
Exp. Mech.
0014-4851,
44
(
2
), pp.
176
184
.
24.
Prime
,
M. B.
, 2001, “
Cross-Sectional Mapping of Residual Stresses by Measuring the Surface Contour After a Cut
,”
ASME J. Eng. Mater. Technol.
0094-4289,
123
(
2
), pp.
162
168
.
25.
Chen
,
S. R.
, 2007, private communication.
You do not currently have access to this content.