Ultrasonic consolidation, an emerging additive manufacturing technology, is one of the most recent technologies considered for fabrication of metal matrix composites (MMCs). This study was performed to identify the optimum combination of processing parameters, including oscillation amplitude, welding speed, normal force, operating temperature, and fiber orientation, for manufacture of long-fiber-reinforced MMCs. A design of experiments approach (Taguchi L25 orthogonal array) was adopted to statistically determine the influences of individual process parameters. SiC fibers of 0.1mm diameter were successfully embedded into an Al 3003 metal matrix. Push-out testing was employed to evaluate the bond strength between the fiber and the matrix. Data from push-out tests and microstructural studies were analyzed and an optimum combination of parameters was achieved. The effects of process parameters on bond formation and fiber/matrix bond strength are discussed.

1.
White
,
D. R.
, 2003, “
Ultrasonic Consolidation of Aluminum Tooling
,”
Adv. Mat. Process.
,
161
, pp.
64
65
.
2.
Kong
,
C. Y.
, 2005, “
Investigation of Ultrasonic Consolidation for Embedding Active/Passive Fibers in Aluminum Matrices
,” Doctoral thesis, Loughborough University, Loughborough, United Kingdom.
3.
Clyne
,
T. W.
, and
Withers
,
P. J.
, 1993,
An Introduction to Metal Matrix Composites
,
Cambridge University Press
, Cambridge, UK, Chaps. 6 and 9.
4.
Daniels
,
H. P. C.
, 1965, “
Ultrasonic Welding
,”
Ultrasonics
0041-624X,
3
, pp.
190
196
.
5.
O’Brien
,
R. L.
, 1991,
Welding Handbook
, 8th ed.,
American Welding Society
, Miami, Vol.
2
.
6.
Kong
,
C. Y.
,
Soar
,
R. C.
, and
Dickens
,
P. M.
, 2004, “
Ultrasonic Consolidation for Embedding SMA Fibers within Aluminum Matrices
,”
Compos. Struct.
0263-8223,
66
, pp.
421
427
.
7.
Kong
,
C. Y.
, and
Soar
,
R. C.
, 2005, “
Method for Embedding Optical Fibers in an Aluminum Matrix by Ultrasonic Consolidation
,”
Appl. Opt.
0003-6935,
44
(
30
), pp.
6325
6333
.
8.
Kong
,
C. Y.
, and
Soar
,
R. C.
, 2005, “
Fabrication of Metal-matrix Composites and Adaptive Composites Using Ultrasonic Consolidation Process
,”
Mater. Sci. Eng., A
0921-5093,
412
, pp.
12
18
.
9.
Marshall
,
D. B.
, and
Oliver
,
W. C.
, 1987, “
Measurement of Interfacial Mechanical Properties in Fiber-Reinforced Ceramic Composites
,”
J. Am. Ceram. Soc.
0002-7820,
70
(
8
), pp.
542
548
.
10.
Doumanidis
,
C.
, and
Gao
,
Y.
, 2004, “
Mechanical Modeling of Ultrasonic Welding
,”
Weld. J. (Miami, FL, U.S.)
0043-2296,
83
, pp.
140s
146s
.
11.
Kong
,
C. Y.
,
Soar
,
R. C.
, and
Dickens
,
P. M.
, 2004, “
Optimum Process Parameters for Ultrasonic Consolidation of 3003 Aluminum
,”
J. Mater. Process. Technol.
0924-0136,
146
, pp.
181
187
.
12.
Kong
,
C. Y.
,
Soar
,
R. C.
, and
Dickens
,
P. M.
, 2003, “
Characterization of Aluminum Alloy 6061 for the Ultrasonic Consolidation Process
,”
Mater. Sci. Eng., A
0921-5093,
363
, pp.
99
106
.
13.
Nordstrom
,
R.
, 2003, “
Introduction to AE and AE Instrumentation
,”
Pre-conference Event for AEWG-46
, Portland, Oregon, Aug. 4–6.
14.
Chandra
,
N.
, and
Ananth
,
C. R.
, 1995, “
Analysis of Interfacial Behavior in MMCs and IMCs by the Use of Thin-Slice Push-out Tests
,”
Compos. Sci. Technol.
0266-3538,
54
, pp.
87
100
.
15.
Eldridge
,
J. I.
, and
Brindley
,
R. K.
, 1989, “
Investigation of Interfacial Shear Strength in a SiC fiber/Ti-24Al-11Nb Composite by a Fiber Push-out Technique
,”
J. Mater. Sci. Lett.
0261-8028,
8
, pp.
1451
1454
.
16.
Janaki Ram
,
G. D.
,
Yang
,
Y.
, and
Stucker
,
B. E.
, 2006, “
Improving Linear Weld Density in Ultrasonically Consolidated Parts
,”
17th Solid Freeform Fabrication Symposium
, University of Texas at Austin, Austin, TX, August 14–16.
17.
Roy
,
R.
, 1990,
A Primer on the Taguchi Method
,
Van Nostrand Reinhold
, New York.
18.
Li
,
S.
, and
Chao
,
C.
, 2004, “
Effects of Carbon Fiber/Al Interface on Mechanical Properties of Carbon-Fiber-Reinforced Aluminum-Matrix Composites
,”
Metall. Mater. Trans. A
1073-5623,
35A
, pp.
2153
2160
.
19.
Gao
,
Y.
, and
Doumanidis
,
C.
, 2002, “
Mechanical Analysis of Ultrasonic Bonding for Rapid Prototyping
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
2
), pp.
426
434
.
You do not currently have access to this content.