In the present study, a mathematical model has been developed to evaluate temperature and strain fields as well as dynamic and static microstructural changes during the nonisothermal forging process. To do so, a finite element analysis and a microstructural model based on Bergstrom’s model have been coupled for predicting temperature history, velocity and strain fields as well as phase transformations within the metal during and after hot forging. To verify the results of the model, theoretical predictions for loadstroke behavior and austenite grain size have been compared with experimental results for two grades of steel.

1.
Chakrabarty, J., 1987, Theory of Plasticity, New York, McGraw-Hill.
2.
Oh
,
S. I.
,
1982
, “
Finite Element Analysis of Metal Forming Processes With Arbitrarily Shaped Dies
,”
Int. J. Mech. Sci.
,
24
, p.
479
479
.
3.
Dadras
,
P.
, and
Wells
,
W. R.
,
1984
, “
Heat Transfer Aspect of Nonisothermal Axisymmetric Upset Forging
,”
ASME J. Eng. Ind.
,
106
, p.
187
187
.
4.
Dadras
,
P.
, and
Burte
,
P. R.
,
1986
, “
Nonisothermal Axisymmetric Forging
,”
ASME J. Eng. Ind.
,
108
, p.
288
288
.
5.
Kim
,
Y. J.
, and
Yang
,
D. Y.
,
1985
, “
A Formulation for Rigid-Plastic Finite Element Method Considering Work-Hardening Effect
,”
Int. J. Mech. Sci.
,
27
, pp.
487
495
.
6.
Diko
,
F.
, and
Hashmi
,
M. S. J.
,
1993
, “
A Finite Element Simulation of Non-Steady State Forming Processes
,”
J. Mater. Process. Technol.
,
38
, pp.
115
122
.
7.
Gelin
,
J. C.
, and
Nguegang
,
B. V.
,
1996
, “
Modelling of the Thermo-Mechanical Coupling During Hot Forming of Viscoplastic Materials
,”
J. Mater. Process. Technol.
,
60
, pp.
441
446
.
8.
Park
,
J. M.
,
Kim
,
Y. H.
, and
Bae
,
W. B.
,
1997
, “
An Upper Bound Analysis of Metal Forming Processes by Nodal Velocity Fields Using a Shape Function
,”
J. Mater. Process. Technol.
,
71
, pp.
94
101
.
9.
Bini
,
M.
,
Cabrera
,
J. M.
, and
Prado
,
J. M.
,
1998
, “
Modelling the Hot Working of Simple Geometries Employing Physical-Based Constitutive Equations and the Finite Element Method
,”
Mater. Forum
,
284–286
, pp.
369
376
.
10.
Jang
,
Y.
,
Ko
,
D.
, and
Kim
,
B.
,
2000
, “
Application of the Finite Element Method to Predict Microstructure Evolution in the Hot Forging of Steel
,”
J. Mater. Process. Technol.
,
101
, pp.
85
94
.
11.
Lee
,
R.
,
Chen
,
T.
, and
Pan
,
M.
,
1996
, “
Evaluation of the Preform of a Stepped Forging Part by Coupled Thermo-Viscoplastic Finite Element Analysis and Visoplasticity
,”
J. Mater. Process. Technol.
,
57
, pp.
278
287
.
12.
Lu
,
X.
, and
Balendra
,
R.
,
1996
, “
Evaluation of FE Models for the Calculation of Die Cavity Compensation
,”
J. Mater. Process. Technol.
,
58
, pp.
212
216
.
13.
Sellars
,
C. M.
, and
Whiteman
,
J. A.
,
1979
, “
Recrystallization and Grain Growth in Hot Rolling
,”
Met. Sci.
,
13
, pp.
187
194
.
14.
Bergstrom
,
Y.
,
1969
, “
A Dislocation Model for Stress-Strain Behavior of Polycrystalline α-Fe With Especial Emphasis the Variation of the Densities of Mobile and Immobile Dislocations
,”
Mater. Sci. Eng.
,
5
, pp.
193
200
.
15.
Serajzadeh
,
S.
, and
Karimi Taheri
,
A.
,
2003
, “
Prediction of Flow Stress at Hot Working Condition
,”
Mech. Res. Commun.
,
30
, pp.
87
93
.
16.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Oxford, Oxford University Press.
17.
Semiatin
,
S. L.
,
Collings
,
E. W.
,
Wood
,
V. E.
, and
Altan
,
T.
,
1987
, “
Determination of the Interface Heat Transfer Coefficient for Non-Isothermal Bulk-Forming Processes
,”
ASME J. Eng. Ind.
,
109
, pp.
49
57
.
18.
Kobayashi, S., Oh, S. I., and Altan, T., 1988, Metal Forming and Finite Element Method, Oxford, Oxford University Press.
19.
Anderson
,
J. G.
, and
Evans
,
R. W.
,
1996
, “
Modelling Flow Stress Evaluation During Elevated Temperature Deformation of Two Low Carbon Steels
,”
Ironmaking Steelmaking
,
23
, pp.
130
135
.
20.
Serajzadeh
,
S.
,
2003
, “
Development of Constitutive Equations for a High Carbon Steel Using Additivity Rule
,”
ISIJ Int.
,
43
, pp.
1057
1062
.
21.
Colas
,
R.
,
1996
, “
A Model for the Hot Deformation of Low-Carbon Steel
,”
J. Mater. Process. Technol.
,
62
, pp.
180
185
.
22.
Lusk
,
M.
, and
Jou
,
H. J.
,
1997
, “
On the Rule of Additivity in Phase Transformation Kinetics
,”
Metall. Mater. Trans. A
,
28
, pp.
287
291
.
23.
Medina
,
S. F.
, and
Mancila
,
J. E.
,
1993
, “
Determination of Static Recrystallization Critical Temperature of Austenite in Micro-Alloyed Steels
,”
ISIJ Int.
,
33
, pp.
1257
1264
.
24.
Sellers
,
C. M.
,
1985
, “
The Kinetics of Softening Processes During Hot Working of Austenite
,”
Czech. J. Phys.
,
B35
, pp.
239
248
.
25.
Darken, L. S., and Gurry, R. W., 1953, Physical Chemistry of Metals, McGraw-Hill, New York, p. 415.
26.
Morales
,
R. D.
,
Lopez
,
A. G.
, and
Oliveres
,
I. M.
,
1991
, “
Heat Transfer Analysis During Water Spray Cooling of Steel Rods
,”
ISIJ Int.
,
30
, pp.
48
57
.
27.
Hodgson
,
P. D.
, and
Gibbs
,
R. K.
,
1992
, “
A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels
,”
ISIJ Int.
,
32
, pp.
1329
1338
.
28.
Serajzadeh
,
S.
, and
Karimi Taheri
,
A.
,
2002
, “
An Investigation of the Silicon Role on Austenite Recrystallization
,”
Mater. Lett.
,
6
, pp.
984
989
.
29.
Umemoto
,
M.
,
Ohtsuka
,
H.
, and
Tamura
,
I.
,
1983
, “
Transformation to Pearlite From Work-Hardened Austenite
,”
Trans. Iron Steel Inst. Jpn.
,
23
, pp.
775
784
.
You do not currently have access to this content.