A droplet generator has been designed and built to make wax and tin alloy droplets for freeform fabrication. The linear stability theory of liquid jets for forming droplets is first reviewed. The analytical formula for predicting droplet size and breakup length at optimal conditions are then developed. The suitability of the formulas to be used for the present droplet deposition system is studied by comparing its prediction with the more accurate numerical results and previously published experimental data. Only the suitable formulation is adopted for the design and operation of the droplet generator system. Experiments have been conducted at a wide range of operating conditions including different nozzle sizes, jet velocities, and frequencies. Good agreements are found between the predictions based on the adopted analytical formulation and the experimental results. It has been found that using the present design and procedure recommended, the droplet sizes can be controlled having a size deviation of less than 3 percent and the shape variation of the deposited layer can be managed within 3 percent of its deposited width.

1.
Jacobs, P. F., 1996, Stereolithography and Other BP&M Technologies, Society of Manufacturing Engineers, Dearborn, MI.
2.
Beaman, J. J., Barlow, J. W., Bourell, D. L., Crawford, R. H., Marcus, H. L., and McAlea, K. P., 1997, Solid Freeform Fabrication: A New Direction in Manufacturing, Kluwer Academic, Boston, MA.
3.
Orme
,
M.
,
Huang
,
C.
, and
Courter
,
J.
,
1996
, “
Precision Droplet-Based Manufacturing and Material Synthesis: Fluid Dynamics and Thermal Control Issues
,”
Atomization Sprays
,
6
, pp.
305
329
.
4.
Kuhn
,
L.
, and
Myers
,
R. A.
,
1979
, “
Ink-Jet Printing
,”
Sci. Am.
,
240
, No.
4
, Apr., pp.
162
178
.
5.
Wallace
,
D. B.
,
1989
, “
Automated Electronic Circuit Manufacturing Using Ink-Jet Technology
,”
ASME J. Electron. Packag.
,
111
, pp.
108
111
.
6.
Lau, J., 1995, Ball Grid Array Technology, McGraw-Hill, New York.
7.
Hayes
,
D. J.
,
Wallace
,
D. B.
,
Boldman
,
M. T.
, and
Marusak
,
R. M.
,
1994
, “
Picoliter Solder Droplet Dispensing
,”
Int. J. Microcirc. Electron. Packag.
,
16
, pp.
173
180
.
8.
Ju
,
T. H.
,
Lin
,
W.
,
Lee
,
Y. C.
, and
Liu
,
J. J.
,
1994
, “
Effects of Ceramic Ball-Grid-Array Package’s Manufacturing Variations on Solder Joint Reliability
,”
ASME J. Electron. Packag.
,
116
, pp.
242
248
.
9.
Lovelady, M. L., and Watts, J. D., 1999, “Closed Loop Feedback for Continuous Mode Materials Jetting,” 24 IEEE/CPMT Int. Electronics Manufacturing Technology Symposium, IEEE, pp. 189–195.
10.
Lee
,
H. C.
,
1974
, “
Drop Formation in a Liquid Jet
,”
IBM J. Res. Develop.
,
18
, pp.
173
180
.
11.
Chun, J., and Passow, C. H., 1993, “Production of Charged Uniformly Sized Metal Droplets,” U. S. Patent 5,266,098.
12.
Rayleigh
,
J. W. S.
,
1878
, “
On the Stability of Jets
,”
Proc. London Math. Soc.
,
10
, pp.
4
13
.
13.
Weber
,
C.
,
1931
, “
The Decomposition of a Liquid Jet
,”
Z. Angew. Math. Mech.
,
11
, pp.
136
154
.
14.
Donnelly
,
R. J.
, and
Glaberson
,
W.
,
1966
, “
Experimental on the Capillary Instability of a Liquid Jet
,”
Proc. R. Soc. London, Ser. A
,
290
, pp.
547
556
.
15.
McCarthy
,
M. J.
, and
Molloy
,
N. A.
,
1974
, “
Review of Stability of Liquid Jets and the Influence of Nozzle Design
,”
Chem. Eng. J.
,
7
, pp.
1
20
.
16.
Orme
,
M.
, and
Muntz
,
E. P.
,
1987
, “
New Technique for Producing Highly Uniform Droplet Streams over an Extended Range of Disturbance Wave Number
,”
Rev. Sci. Instrum.
,
58
, pp.
279
284
.
17.
Sterling
,
A. M.
, and
Sleicher
,
C. A.
,
1975
, “
The Instability of Capillary Jets
,”
J. Fluid Mech.
,
68
, pp.
477
495
.
18.
Reitz
,
R. D.
,
1987
, “
Modeling Atomization Processes in High-pressure Vaporizing Sprays
,”
Atom. Spray Technol.
,
3
, pp.
309
337
.
19.
Lin
,
S. P.
, and
Reitz
,
R. D.
,
1998
, “
Drop and Spray Formation from a Liquid Jet
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
85
105
.
20.
Orme
,
M.
,
1994
, “
Rapid Solidification Materials Synthesis with Nano-Liter Droplets
,”
SAE Trans. J. Aerospace
,
102
, pp.
1876
1881
.
21.
Yim, P. W., 1996, “The Role of Surface Oxidation in the Break-up of Laminar Liquid Metal Jets,” Ph.D. thesis, M.I.T, Cambridge, MA.
22.
Harmon
, Jr.,
D. B.
,
1955
, “
Drop Sizes from Low Speed Jets
,”
J. Franklin Inst.
,
259
, pp.
519
523
.
23.
Middleman
,
S.
, and
Gavis
,
J.
,
1961
, “
Expansion and Contraction of Capillary Jets of Newtonian Liquids
,”
Phys. Fluids
,
4
, No.
3
, pp.
355
359
.
24.
Clift, R., Grace J. R., and Weber, M. E., 1978, Bubble, Drops and Particles, Academic, New York, pp. 333–340.
25.
Fox, R. W., and McDonald, A. T., 1985, Introduction to Fluid Mechanics, Wiley, New York, pp. 356–373.
26.
Brandes, E. A., and Brook, G. B., ed., 1992, Smithells Metals Reference Book, Section 14.2, Butterworth-Heinemann, Oxford, England.
27.
Manko, H. H., 1979, Solders and Soldering, McGraw-Hill, New York, pp. 120–121.
28.
Wittenberg, L. J., and Ofte, D., 1970, “Viscosity of Liquid Metals,” Physicochemical Measurements in Metals Research, Part 2, R. A. Rapp, ed., Wiley, New York.
29.
Boyer, H. E., and Gall, T. L., ed., 1985, Metals Handbook, Desk Ed., American Society for Metals, Metal Park, OH, pp. 1.46–1.49.
30.
Warth, A. H., 1956, The Chemistry and Technology of Waxes, Reinhold, New York, NY.
31.
Gao
,
F. Q.
, and
Sonin
,
A. A.
,
1994
, “
Precise Deposition of Molten Microdrops: the Physics of Digital Microfabrication
,”
Proc. R. Soc. London, Ser. A
,
444
, pp.
533
554
.
32.
Incropera, F. P., and DeWitt, D. P., 1985, Fundamentals of Heat and Mass Transfer, 2nd ed., Wiley, New York, pp. 774–775.
33.
Rocha, J. C., 1997, “Control of the UDS Process for the Production of Solder Balls for BGA Electronics Packaging,” S.M. thesis, Massachusetts Institute of Technology, Cambridge, MA.
You do not currently have access to this content.