Abstract

With the increasing performance and appearance requirements of electronic products, higher standards have been put forward for the machining accuracy and quality of the precision copper electrode for product molds. The precision copper electrode is large in material plasticity and small in size. Burrs are easily generated during the cutting process, and subsequent cleaning is difficult. In this paper, according to the geometric features of the copper electrode, the distribution type and formation mechanism of burrs are deeply analyzed. The influence of cutting-edge geometry on burrs lateral dimension is investigated by simulation. Further, the new left-handed fillet milling cutter is designed that takes into account the simultaneous cutting of the end edge and the circumferential edge. Finally, based on the new milling cutter, burrs suppression machining process adapted to different geometric features is planned. Experiments show that the new cutter and process can greatly reduce the size of burrs and basically realize burrs-free machining compared with the conventional process of the ordinary right-handed milling cutter, and the service life of the new cutter is longer, which can meet the actual machining needs.

References

1.
Ko
,
S. L.
, and
Dornfeld
,
D. A.
,
1991
, “
A Study on Burrs Formation Mechanism
,”
ASME J. Eng. Mater. Technol.
,
113
(
1
), pp.
75
87
.
2.
Ko
,
S. L.
, and
Dornfeld
,
D. A.
,
1996
, “
Burrs Formation and Fracture in Oblique Cutting
,”
J. Mater. Process. Technol.
,
62
(
1–3
), pp.
24
36
.
3.
Kumar
,
P.
,
Bajpai
,
V.
, and
Singh
,
R.
,
2017
, “
Burrs Height Prediction of TI6AL4V in High Speed Micro-Milling by Mathematical Modeling
,”
Manuf. Lett.
,
11
(
1
), pp.
12
16
.
4.
Zhang
,
X. W.
,
Yu
,
T. B.
,
Wang
,
W. S.
, and
Zhao
,
J.
,
2019
, “
Improved Analytical Prediction of Burrs Formation in Micro End Milling
,”
Int. J. Mech. Sci.
,
151
(
2
), pp.
461
470
.
5.
Pang
,
X. Q.
,
Zeng
,
Y. N.
,
Zhang
,
J. Y.
, and
Deng
,
W. J.
,
2021
, “
Analytical Model and Experimental Verification of Poisson Burr Formation in Ductile Metal Machining
,”
J. Mater. Process. Technol.
,
290
(
8
), p.
116966
.
6.
Pang
,
X. Q.
,
Zhang
,
J. Y.
,
Yin
,
X. L.
,
Zhang
,
B. Y.
, and
Deng
,
W. J.
,
2020
, “
Analytical and Experimental Investigation of Improved Burr Morphology Prediction at the Top Edge in Metal Machining
,”
Int. J. Adv. Manuf. Technol.
,
108
(
5–6
), pp.
1343
1355
.
7.
Chen
,
N.
,
Zhang
,
X. L.
,
Wu
,
J. M.
,
Wu
,
Y.
,
Li
,
L.
, and
He
,
N.
,
2020
, “
Suppressing the Burr of High Aspect Ratio Structure by Optimizing the Cutting Parameters in the Micro-Milling Process
,”
Int. J. Adv. Manuf. Technol.
,
111
(
3–4
), pp.
985
997
.
8.
Luan
,
Y. H.
,
Lu
,
X. H.
,
Hou
,
P. R.
, and
Liang
,
S. Y.
,
2021
, “
Characteristics and Mechanism of Top Burr Formation in Micro-Milling LF21
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071004
.
9.
Long
,
Y.
, and
Guo
,
C. S.
,
2012
, “
Finite Element Modeling of Burrs Formation in Orthogonal Cutting
,”
Mach. Sci. Technol.
,
16
(
3
), pp.
321
336
.
10.
Wu
,
X.
,
Li
,
L.
, and
He
,
N.
,
2016
, “
Investigation on the Burrs Formation Mechanism in Micro Cutting
,”
Precis. Eng.
,
47
(
1
), pp.
191
196
.
11.
Lekkala
,
R.
,
Bajpai
,
V.
,
Singh
,
R.
, and
Joshi
,
S. S.
,
2011
, “
Characterization and Modeling of Burrs Formation in Micro-End Milling
,”
Precis. Eng.
,
35
(
4
), pp.
625
637
.
12.
Wu
,
Y.
,
Chen
,
N.
,
Bian
,
R.
,
He
,
N.
,
Li Z
,
J.
, and
Li
,
L.
,
2020
, “
Investigations on Burr Formation Mechanisms in Micro Milling of High-Aspect-Ratio Titanium Alloy ti-6al-4v Structures
,”
Int. J. Mech. Sci.
,
185
(
21
), p.
105884
.
13.
Hashimura
,
M.
,
Chang
,
Y. P.
, and
Dornfeld
,
D.
,
1999
, “
Analysis of Burrs Formation Mechanism in Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
121
(
1
), pp.
1
7
.
14.
Régnier
,
T.
,
Fromentin
,
G.
,
Marcon
,
B.
,
Outeiro
,
J.
,
D’Acunto
,
A.
,
Crolet
,
A.
, and
Grunder
,
T.
,
2018
, “
Fundamental Study of Exit Burrs Formation Mechanisms During Orthogonal Cutting of AlSi Aluminium Alloy
,”
J. Mater. Process. Technol.
,
257
(
7
), pp.
112
122
.
15.
Regnier
,
T.
,
Marcon
,
B.
,
Outeiro
,
J.
,
Fromentin
,
G.
,
D’Acunto
,
A.
, and
Crolet
,
A.
,
2019
, “
Investigations on Exit Burrs Formation Mechanisms Based on Digital Image Correlation and Numerical Modeling
,”
Mach. Sci. Technol.
,
23
(
6
), pp.
925
950
.
16.
Wang
,
G. C.
,
Shen
,
C. G.
,
Pei
,
H. J.
,
Zhu
,
Y. M.
,
Li
,
Q. F.
, and
Qu
,
H. J.
,
2007
, “
Formation and Control of Two Side Direction Burrs
,”
Adv. Mater. Res.
,
24–25
(
5
), pp.
39
44
. www.scientific.net/AMR.24-25.39
17.
Zhu
,
Y.
, and
Wang
,
G.
,
2009
, “
Simulation Model and Mechanism of Burrs Formation
,”
International Workshop on Modelling, Simulation and Optimization
,
Hong Kong, China
,
Dec. 27–28, 2008
.
18.
Niknam
,
S. A.
, and
Songmene
,
V.
,
2013
, “
Modeling of Burrs Thickness in Milling of Ductile Materials
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
2029
2039
.
19.
Niknam
,
S. A.
, and
Songmene
,
V.
,
2014
, “
Analysis of Friction and Burrs Formation in Slot Milling
,”
47th CIRP Conference on Manufacturing Systems.
,
Univ Windsor, Windsor, Canada
,
Apr. 28–30
, pp.
755
759
.
20.
Mandal
,
R. S.
,
Das
,
S.
, and
Saha
,
P. P.
,
2021
, “
An Investigation on Formation of Burrs During Milling of Aluminium Alloy Under Wet Condition
,”
Proc. Inst. Mech. Eng. B
,
235
(
5
), pp.
806
818
.
21.
Wang
,
T.
,
Wu
,
X. Y.
,
Zhang
,
G. Q.
,
Chen
,
Y. H.
,
Xu
,
B.
, and
Ruan
,
S. C.
,
2022
, “
Study on Surface Roughness and Top Burr of Micro-Milled Zr-Based Bulk Metallic Glass in Shear Dominant Zone
,”
Int. J. Adv. Manuf. Technol.
,
107
(
9–10
), pp.
4287
4299
.
22.
Kiswanto
,
G.
,
Zariatin
,
D. L.
, and
Ko
,
T. J.
,
2014
, “
The Effect of Spindle Speed, Feed-Rate and Machining Time to the Surface Roughness and Burrs Formation of Aluminum Alloy 1100 in Micro-Milling Operation
,”
J. Manuf. Processes
,
16
(
4
), pp.
435
450
.
23.
Saptaji
,
K.
, and
Subbiah
,
S.
,
2017
, “
Burrs Reduction of Micro-Milled Microfluidic Channels Mould Using a Tapered Tool
,”
Procedia Eng.
,
184
(
15
), pp.
137
144
.
24.
Adeniji
,
D.
,
Schoop
,
J.
,
Gunawardena
,
S.
,
Hanson
,
C.
, and
Jahan
,
M.
,
2020
, “
Characterization and Modeling of Surface Roughness and Burr Formation in Slot Milling of Polycarbonate
,”
J. Manuf. Mater. Process.
,
4
(
2
), p.
59
.
25.
Wang
,
J. C.
,
Zhang
,
Z. H.
,
Zhang
,
C.
,
Fu
,
J. B.
, and
Chen
,
J. C.
,
2020
, “
Simulation and Experiment Study of Burrs in Micro-Milling Zr-Based Metallic Glass
,”
J. Mech. Sci. Technol.
,
34
(
7
), pp.
3027
3039
.
26.
Deng
,
W. J.
,
Li
,
C.
,
Xia
,
W.
, and
Wei
,
X. Z.
,
2008
, “
Finite Element Modeling of Burrs Formation in Orthogonal Metal Cutting
,”
Adv. Mater. Res.
,
53–54
(
21
), pp.
71
76
. www.scientific.net/AMR.53-54.71
27.
Olsson
,
M.
,
Persson
,
H.
,
Agmell
,
M.
,
Bushlya
,
V.
, and
Ståhl
,
J. E.
,
2018
, “
FE Simulation and Experimental Verification of Side-Flow and Burrs Formation in Machining of Oxygen-Free Copper
,”
Procedia CIRP
,
72
(
6
), pp.
1427
1432
.
28.
Gillespie
,
L. K.
, and
Blotter
,
P.T.
,
1976
, “
The Formation and Properties of Machining Burrss
,”
J. Manuf. Sci. Eng
,
98
(
1
), pp.
66
74
.
29.
Kim
,
Y. G.
,
Kim
,
K. J.
, and
Kim
,
K. H.
,
2021
, “
Efficient Removal of Milling Burrs by Abrasive Flow
,”
Int. J. Precis. Eng. Manuf.
,
22
(
3
), pp.
441
451
.
30.
Yuan
,
Z. H.
,
Fang
,
B.
,
Zhang
,
Y. B.
, and
Wang
,
F.
,
2022
, “
Effect of Cutting Parameters on Chips and Burrs Formation With Traditional Micromilling and Ultrasonic Vibration Assisted Micromilling
,”
Int. J. Adv. Manuf. Technol.
,
119
(
3–4
), pp.
2615
2628
.
31.
Biermann
,
D.
, and
Hartmann
,
H.
,
2012
, “
Reduction of Burrs Formation in Drilling Using Cryogenic Process Cooling
,”
Procedia CIRP
,
3
(
1
), pp.
85
90
.
32.
Kou
,
Z. J.
,
Wan
,
Y.
,
Cai
,
Y. K.
,
Liang
,
X. C.
, and
Liu
,
Z. Q.
,
2015
, “
Burrs Controlling in Micro Milling With Supporting Material Method
,”
Procedia Manuf.
,
1
(
1
), pp.
501
511
.
33.
Yuan
,
S. S.
,
Li
,
Y. Q.
,
Xu
,
J. K.
, and
Zhai
,
C. T.
,
2019
, “
Study on Orthogonal Micro-Cutting Deformation of Oxygen-Free Copper
,”
2019 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)
,
Beijing, China
,
Aug. 4–8
, pp.
11
15
.
34.
Liu
,
S. S.
,
2018
, “Simulation and Experiment Study of Burr Formation in Micro Milling Oxygen-Free Copper Micro Structures,”
Harbin Institute of Technology
,
Harbin, China
, pp.
1
75
.
35.
Wang
,
M. J.
,
Wang
,
Y.
,
Wei
,
Z. C.
, and
Duan
,
C. Z.
,
2022
, “
Slip Line Field of Adiabatic Shear Band in Cutting Process
,”
J. Mech. Eng.
,
58
(
7
), pp.
284
294
.
36.
Chen
,
L.
,
Deng
,
D. X.
,
Pi
,
G.
,
Huang
,
X.
, and
Zhou
,
W.
,
2020
, “
Burr Formation and Surface Roughness Characteristics in Micro-Milling of Microchannels
,”
Int. J. Adv. Manuf. Technol.
,
111
(
5–6
), pp.
1277
1290
.
You do not currently have access to this content.