Joining the dissimilar metal pair of NiTi to stainless steel is of great interest for implantable medical applications. Formation of brittle intermetallic phases requires that the joining processes used for this dissimilar pair limits the amount of over-melting and mixing along the interface. Thus, because of its ability to precisely control heat input, laser joining is a preferred method. This study explores a method of using a cup and cone interfacial geometry, with no filler material, to increase the tensile strength of the joint. Not only does the cup and cone geometry increase the surface area of the interface, but it also introduces a shear stress component, which is shown to be beneficial to tensile strength of the wire as well. The fracture strength for various cone apex angles and laser powers is determined. Compositional profiles of the interfaces are analyzed. A numerical model is used for explanation of the processing parameters.

References

1.
Duerig
,
T.
,
Pelton
,
A.
, and
Stöckel
,
D.
,
1999
, “
An Overview of Nitinol Medical Applications
,”
Mater. Sci. Eng. A
,
273–275
, pp.
149
160
.
2.
Avery
,
R. E.
,
1991
, “
Pay Attention to Dissimilar-Metal Welds: Guidelines for Welding Dissimilar Metals
,”
Chem. Eng. Prog.
,
4550
, pp.
1168
1177
.
3.
Mubashar
,
A.
,
Ashcroft
, I
. A.
,
Critchlow
,
G. W.
, and
Crocombe
,
A. D.
,
2011
, “
Strength Prediction of Adhesive Joints After Cyclic Moisture Conditioning Using a Cohesive Zone Model
,”
Eng. Fract. Mech.
,
78
(
16
), pp.
2746
2760
.10.1016/j.engfracmech.2011.07.010
4.
Hand
,
H. M.
,
Arah
,
C. O.
,
McNamara
,
D. K.
, and
Mecklenburg
,
M. F.
,
1991
, “
Effects of Environmental Exposure on Adhesively Bonded Joints
,”
Int. J. Adhes. Adhes.
,
11
(
1
), pp.
15
23
.10.1016/0143-7496(91)90056-N
5.
Schubert
,
E.
,
Zerner
,
D. I.
, and
Sepold
,
P. G.
, “
Laser Beam Joining of Material Combinations for Automotive Applications
,”
Proc. SPIE
,
3097
, pp.
212
221
.10.1117/12.281079
6.
Yamamoto
,
N.
,
Liao
,
J.
,
Watanabe
,
S.
, and
Nakata
,
K.
,
2009
, “
Effect of Intermetallic Compound Layer on Tensile Strength of Dissimilar Friction-Stir Weld of a High Strength Mg Alloy and Al Alloy
,”
Mater. Trans.
,
50
(
12
), pp.
2833
2838
.10.2320/matertrans.M2009289
7.
Yan
,
Y.
,
Zhang
,
D.
,
Qiu
,
C.
, and
Zhang
,
W.
,
2010
, “
Dissimilar Friction Stir Welding Between 5052 Aluminum Alloy and AZ31 Magnesium Alloy
,”
Trans. Nonferrous Met. Soc. China
,
20
, pp.
s619
s623
.10.1016/S1003-6326(10)60550-X
8.
Mathieu
,
A.
,
Shabadi
,
R.
,
Deschamps
,
A.
,
Suery
,
M.
,
Matteï
,
S.
,
Grevey
,
D.
, and
Cicala
,
E.
,
2007
, “
Dissimilar Material Joining Using Laser (Aluminum to Steel Using Zinc-based Filler Wire)
,”
Opt. Laser Technol.
,
39
(
3
), pp.
652
661
.10.1016/j.optlastec.2005.08.014
9.
Li
,
H.
,
Sun
,
D.
,
Gu
,
X.
,
Dong
,
P.
, and
Lv
,
Z.
,
2013
, “
Effects of the Thickness of Cu Filler Metal on the Microstructure and Properties of Laser-welded TiNi Alloy and Dtainless Steel Joint
,”
Mater. Des.
,
50
, pp.
342
350
.10.1016/j.matdes.2013.03.014
10.
Satoh
,
G.
, and
Yao
,
Y. L.
,
2011
, “
Laser Autogenous Brazing—A New Method for Joining Dissimilar Metals
,”
Proceedings of the 30th International Congress on the Applications of Lasers and Electro-Optics
, Lake Buena Vista, FL, pp.
315
324
.
11.
Bao
,
J.
, and
Yao
,
Y. L.
,
2001
, “
Analysis and Prediction of Edge Effects in Laser Bending
,”
ASME J. Manuf. Sci. Eng.
,
123
(
1
), pp.
53
61
.10.1115/1.1345729
12.
Schwartz
,
M.
,
1979
,
Metals Joining Manual
,
McGraw-Hill
,
New York
.
13.
Brandal
,
G. B.
,
Satoh
,
G.
,
Yao
,
Y. L.
, and
Naveed
,
S.
,
2013
, “
Effects of Interfacial Geometry on Laser Joining of Dissimilar NiTi to Stainless Steel Wires
,”
Proceedings of MSEC 2013
, Madison, WI.
14.
Otsuka
,
K.
, and
Ren
,
X.
,
2005
, “
Physical Metallurgy of Ti–Ni-Based Shape Memory Alloys
,”
Prog. Mater. Sci.
,
50
(
5
), pp.
511
678
.10.1016/j.pmatsci.2004.10.001
15.
Westbrook
,
J. H.
,
1967
, “
Historical Sketch
,”
Intermetallic Compounds
,
J. H.
Westbrook
, ed.,
Robert E. Krieger Publishing Co., Inc.
,
New York
, pp.
3
14
.
16.
Keyzer
,
J. D.
,
2008
,
Thermodynamic Modeling of the Fe-Ni-Ti System: A Multiple Sublattice Approach
,”
Ph.D. thesis, University of Leuven
, Leuven, Belgium.
17.
Vannod
,
J.
,
2011
, “
Laser Welding of Nickel-Titanium and Stainless Steel Wires: Processing, Metallurgy and Properties
,” Ph.D. thesis, Ecole Polytechnique Federale De Lausanne, Lausanne, Switzerland.
18.
Sauthoff
,
G.
,
1995
,
Intermetallics
,
VCH Publishers
,
New York
.
19.
Martins
,
T. B.
, and
Rechenberg
,
H. R.
,
2006
, “
Antiferromagnetic TiFe2 in Applied Fields: Experiment and Simulation
,”
Hyperfine Interact.
,
169
, pp.
1273
1277
.10.1007/s10751-006-9436-9
20.
Ghosh
,
M.
, and
Chatterjee
,
S.
,
2002
, “
Characterization of Transition Joints of Commercially Pure Titanium to 304 Stainless Steel
,”
Mater. Charact.
,
48
(
5
), pp.
393
399
.10.1016/S1044-5803(02)00306-6
21.
Eijk
,
C. V. D.
,
Fostervoll
,
H.
,
Sallom
,
Z. K.
, and
Akselsen
,
O. M.
,
2003
, “
Plasma Welding of NiTi to NiTi, Stainless Steel and Hastelloy C276
,”
ASM Materials Solutions 2003 Conference
, Pittsburgh, PA.
22.
Borrisutthekul
,
R.
,
Yachi
,
T.
,
Miyashita
,
Y.
, and
Mutoh
,
Y.
,
2007
, “
Suppression of Intermetallic Reaction Layer Formation by Controlling Heat Flow in Dissimilar Joining of Steel and Aluminum Alloy
,”
Mater. Sci. Eng. A
,
467
, pp.
108
113
.10.1016/j.msea.2007.03.049
23.
Cacciamani
,
G.
,
Keyzer
,
J.
De, Ferro
,
R.
,
Klotz
,
U. E.
,
Lacaze
,
J.
, and
Wollants
,
P.
,
2006
, “
Critical Evaluation of the Fe–Ni, Fe–Ti, and Fe–Ni–Ti Alloy Systems
,”
Intermetallics
,
14
(
10–11
), pp.
1312
1325
.10.1016/j.intermet.2005.11.028
24.
Ortega
,
A. M.
,
Tyber
,
J.
,
Frick
,
C. P.
,
Gall
,
K.
, and
Maier
,
H. J.
,
2005
, “
Cast NiTi Shape-Memory Alloys
,”
Adv. Eng. Mater.
,
7
(
6
), pp.
492
507
.10.1002/adem.200400173
25.
Liu
,
Y.
, and
McCormick
,
P. G.
,
1994
, “
Thermodynamic Analysis of the Martensitic Transformation in NiTi—Effect of Heat Treatment on Transformation Behaviour
,”
Acta Metall. Mater.
,
42
(
7
), pp.
2401
2406
.10.1016/0956-7151(94)90318-2
26.
Satoh
,
G.
,
Brandal
,
G. B.
,
Naveed
,
S.
, and
Yao
,
Y. L.
,
2013
, “
Laser Autogenous Brazing of Biocompatible, Dissimilar Metals in Tubular Geometries
,”
Proceedings of North American Manufacturing Research Institution/SME
, Vol.
41
, Madison, WI.
27.
Vaidya
,
W. V.
,
Horstmann
,
M.
,
Ventzke
, V
.
,
Petrovski
,
B.
,
Koçak
,
M.
,
Kocik
,
R.
, and
Tempus
,
G.
,
2010
, “
Improving Interfacial Properties of a Laser Beam Welded Dissimilar Joint of Aluminium AA6056 and Titanium Ti6Al4V for Aeronautical Applications
,”
J. Mater. Sci.
,
45
(
22
), pp.
6242
6254
.10.1007/s10853-010-4719-6
28.
Vaidya
,
W. V.
,
Horstmann
,
M.
,
Ventzke
,
V.
,
Petrovski
,
B.
,
Koçak
,
M.
,
Kocik
,
R.
, and
Tempus
,
G.
,
2009
, “
Structure-Property Investigations on A Laser Beam Welded Dissimilar Joint of Aluminium AA6056 and Titanium Ti6Al4V for Aeronautical Applications Part I: Local Gradients in Microstructure, Hardness and Strength
,”
Materialwiss. Werkstofftech.
,
40
(
8
), pp.
623
633
.10.1002/mawe.200900366
29.
Satoh
,
G.
,
Yao
,
Y. L.
, and
Qiu
,
C.
,
2013
, “
Strength and Microstructure of Laser Fusion-Welded Ti–SS Dissimilar Material Pair
,”
Int. J. Adv. Manuf. Technol.
,
66
(
1–4
), pp.
469
479
.10.1007/s00170-012-4342-6
30.
Ogata
,
Y.
,
Takatugu
,
M.
,
Kunimasa
,
T.
,
Uenishi
,
K.
, and
Kobayashi
,
K. F.
,
2004
, “
Tensile Strength and Pseudo-Elasticity of YAG Laser Spot Melted Ti-Ni Shape Memory Alloy Wires
,”
Mater. Trans.
,
45
(
4
), pp.
1070
1076
.10.2320/matertrans.45.1070
31.
Hertzberg
,
R. W.
,
1996
,
Deformation and Fracture Mechanics of Engineering Materials
,
John wiley & Sons, Inc.
,
New York
.
32.
Awaji
,
H.
, and
Kato
,
T.
,
1999
, “
Awaji—Criterion for Combined Mode I-II Brittle Fracture.Pdf
,”
Mater. Trans.
,
40
(
9
), pp.
972
979
.
33.
Munz
,
D.
, and
Yang
,
Y. Y.
,
1992
, “
Stress Singularities at the Interface in Bonded Dissimilar Materials Under Mechanical and Thermal Loading
,”
J. Appl. Math.
,
59
, pp.
857
861
.
34.
Wah
,
T.
,
1976
, “
Plane Stress Analysis of a Scarf Joint
,”
Int. J. Solids Structures
,
12
, pp.
491
500
.10.1016/0020-7683(76)90032-9
35.
Ifflander
,
R.
,
2001
,
Solid-State Lasers for Materials Processing
,
Springer-Verlag
,
New York
.
36.
Xie
,
J.
,
Kar
,
A.
,
Rothenflue
,
J. A.
, and
Latham
,
W. P.
,
1997
, “
Temperature-Dependent Absorptivity and Cutting Capability of CO2, Nd: YAG, and Chemical Oxygen-Iodine Lasers
,”
J. Laser Appl.
,
9
, pp.
77
85
.10.2351/1.4745447
37.
Bel'skaya
,
E. A.
,
2005
, “
An Experimental Investigation of the Electrical Resistivity of Titanium in the Temperature Range From 77 to 1600 K
,”
High Temp.
,
43
(
4
), pp.
546
553
.10.1007/s10740-005-0096-2
38.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
John wiley & Sons, Inc.
,
Hoboken, NJ
.
39.
Younglove
,
B. A.
, and
Hanley
,
J. M.
,
1986
, “
The Viscosity and Thermal Conductivity Coefficients of Gaseous and Liquid Argon
,”
J. Phys. Chem. Ref. Data
,
15
(
4
), pp.
1323
1337
.10.1063/1.555765
40.
“ASTM Standard E8
,
2011
, “
Standard Test Methods for Tension Testing of Metallic Materials
,” ASTM International, West Conshohocken, PA.”
41.
Li
,
W.
, and
Yao
,
Y. L.
,
2001
, “
Laser Forming With Constant Line Energy
,”
Int. J. Adv. Manuf. Technol.
,
17
(
3
), pp.
196
203
.10.1007/s001700170190
You do not currently have access to this content.