Abstract

This study employs a high-fidelity numerical framework to determine the plastic material flow patterns and temperature distributions that lead to void formation during friction stir welding (FSW), and to relate the void morphologies to the underlying alloy material properties and process conditions. Three aluminum alloys, viz., 6061-T6, 7075-T6, and 5053-H18, were investigated under varying traverse speeds. The choice of aluminum alloys enables the investigation of a wide range of thermal and mechanical properties. The numerical simulations were validated using experimental observations of void morphologies in these three alloys. Temperatures, plastic strain rates, and material flow patterns are considered. The key results from this study are as follows: (1) the predicted stir zone and void morphology are in good agreement with the experimental observations, (2) the temperature and plastic strain rate maps in the steady-state process conditions show a strong dependency on the alloy type and traverse speeds, (3) the material velocity contours provide a good insight into the material flow in the stir zone for the FSW process conditions that result in voids as well as those that do not result in voids. The numerical model and the ensuing parametric studies presented in this study provide a framework for understanding material flow under different process conditions in aluminum alloys and potentially in other alloys. Furthermore, the utility of the numerical model for making quantitative predictions and investigating different process parameters to reduce void formation is demonstrated.

References

1.
Thomas
,
W. M.
,
Nicholas
,
E. D.
,
Needham
,
J. C.
,
Murch
,
M. G.
,
Temple-Smith
,
P.
, and
Dawes
,
C. J.
,
1995
, “Friction Welding,” U.S. Patent 5,460,317.
2.
Leal
,
R. M.
, and
Loureiro
,
A.
,
2004
, “
Defects Formation in Friction Stir Welding of Aluminium Alloys
Materials Science Forum
,
455
, pp.
299
302
.
3.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng., R
,
50
(
1–2
), pp.
1
78
.
4.
Yoshikawa
,
K.
,
2003
, “
A Joining Criterion for Lap Joining of Dissimilar Metal Materials of Aluminum and Stainless Steel by Friction Stir
,”
The 4th International Symposium on Friction Stir Welding
,
Park City, UT
.
5.
Kim
,
Y. G.
,
Fujii
,
H.
,
Tsumura
,
T.
,
Komazaki
,
T.
, and
Nakata
,
K.
,
2006
, “
Effect of Welding Parameters on Microstructure in the Stir Zone of FSW Joints of Aluminum Die Casting Alloy
,”
Mater. Lett.
,
60
(
29–30
), pp.
3830
3837
.
6.
Ren
,
S. R.
,
Ma
,
Z. Y.
, and
Chen
,
L. Q.
,
2007
, “
Effect of Welding Parameters on Tensile Properties and Fracture Behavior of Friction Stir Welded Al–Mg–Si Alloy
,”
Scr. Mater.
,
56
(
1
), pp.
69
72
.
7.
Morisada
,
Y.
,
Imaizumi
,
T.
, and
Fujii
,
H.
,
2015
, “
Clarification of Material Flow and Defect Formation During Friction Stir Welding
,”
Sci. Technol. Weld. Join.
,
20
(
2
), pp.
130
137
.
8.
Chen
,
G.
,
Li
,
H.
,
Wang
,
G.
,
Guo
,
Z.
,
Zhang
,
S.
,
Dai
,
Q.
,
Wang
,
X.
,
Zhang
,
G.
, and
Shi
,
Q.
,
2018
, “
Effects of Pin Thread on the In-Process Material Flow Behavior During Friction Stir Welding: A Computational Fluid Dynamics Study
,”
Int. J. Mach. Tools Manuf.
,
124
(
1
), pp.
12
21
.
9.
Su
,
H.
,
Wu
,
C. S.
,
Bachmann
,
M.
, and
Rethmeier
,
M.
,
2015
, “
Numerical Modeling for the Effect of Pin Profiles on Thermal and Material Flow Characteristics in Friction Stir Welding
,”
Mater. Des.
,
77
(
1
), pp.
114
125
.
10.
Padmanaban
,
G.
, and
Balasubramanian
,
V.
,
2009
, “
Selection of FSW Tool Pin Profile, Shoulder Diameter and Material for Joining AZ31B Magnesium Alloy—An Experimental Approach
,”
Mater. Des.
,
30
(
7
), pp.
2647
2656
.
11.
Rasti
,
J.
,
2018
, “
Study of the Welding Parameters Effect on the Tunnel Void Area During Friction Stir Welding of 1060 Aluminum Alloy
,”
Int. J. Adv. Manuf. Technol.
,
97
(
5–8
), pp.
2221
2230
.
12.
Kim
,
Y. G.
,
Fujii
,
H.
,
Tsumura
,
T.
,
Komazaki
,
T.
, and
Nakata
,
K.
,
2006
, “
Three Defect Types in Friction Stir Welding of Aluminum Die Casting Alloy
,”
Mater. Sci. Eng. A
,
415
(
1–2
), pp.
250
254
.
13.
Arbegast
,
W. J.
,
Coletta
,
E. R.
, and
Li
,
Z.
,
2001
, “
Characterization of Friction Stir Weld Defect Types
,”
TMS 2001 Annual Spring Meeting
,
New Orleans, LA
,
Feb. 11
, pp.
11
15
.
14.
Agiwal
,
H.
,
Ansari
,
M. A.
,
Franke
,
D.
,
Faue
,
P.
,
Clark
,
S. J.
,
Fezzaa
,
K.
,
Rudraraju
,
S.
,
Zinn
,
M.
, and
Pfefferkorn
,
F. E.
,
2022
, “
Material Flow Visualization During Friction Stir Welding Using High-Speed X-Ray Imaging
,”
Manuf. Lett.
,
34
(
1
), pp.
62
66
.
15.
Rosado
,
L. S.
,
Santos
,
T. G.
,
Piedade
,
M.
,
Ramos
,
P. M.
, and
Vilaça
,
P.
,
2010
, “
Advanced Technique for Non-Destructive Testing of Friction Stir Welding of Metals
,”
Measurement
,
43
(
8
), pp.
1021
1030
.
16.
Boldsaikhan
,
E.
,
Corwin
,
E. M.
,
Logar
,
A. M.
, and
Arbegast
,
W. J.
,
2011
, “
The Use of Neural Network and Discrete Fourier Transform for Real-Time Evaluation of Friction Stir Welding
,”
Appl. Soft Comput.
,
11
(
8
), pp.
4839
4846
.
17.
Shrivastava
,
A.
,
Pfefferkorn
,
F. E.
,
Duffie
,
N. A.
,
Ferrier
,
N. J.
,
Smith
,
C. B.
,
Malukhin
,
K.
, and
Zinn
,
M.
,
2015
, “
Physics-Based Process Model Approach for Detecting Discontinuity During Friction Stir Welding
,”
Int. J. Adv. Manuf. Technol.
,
79
(
1
), pp.
605
614
.
18.
Zhu
,
Z.
,
Wang
,
M.
,
Zhang
,
H.
,
Zhang
,
X.
,
Yu
,
T.
, and
Wu
,
Z.
,
2017
, “
A Finite Element Model to Simulate Defect Formation During Friction Stir Welding
,”
Metals
,
7
(
7
), p.
256
.
19.
Schmidt
,
H.
, and
Hattel
,
J.
,
2004
, “
A Local Model for the Thermomechanical Conditions in Friction Stir Welding
,”
Modell. Simul. Mater. Sci. Eng.
,
13
(
1
), pp.
77
93
.
20.
Al-Badour
,
F.
,
Merah
,
N.
,
Shuaib
,
A.
, and
Bazoune
,
A.
,
2013
, “
Coupled Eulerian Lagrangian Finite Element Modeling of Friction Stir Welding Processes
,”
J. Mater. Process. Technol.
,
213
(
8
), pp.
1433
1439
.
21.
Zhu
,
Y.
,
Chen
,
G.
,
Chen
,
Q.
,
Zhang
,
G.
, and
Shi
,
Q.
,
2016
, “
Simulation of Material Plastic Flow Driven by Non-Uniform Friction Force During Friction Stir Welding and Related Defect Prediction
,”
Mater. Des.
,
108
(
1
), pp.
400
410
.
22.
Dialami
,
N.
,
Cervera
,
M.
,
Chiumenti
,
M.
, and
Segatori
,
A.
,
2019
, “
Prediction of Joint Line Remnant Defect in Friction Stir Welding
,”
Int. J. Mech. Sci.
,
151
(
1
), pp.
61
69
.
23.
Ajri
,
A.
, and
Shin
,
Y. C.
,
2017
, “
Investigation on the Effects of Process Parameters on Defect Formation in Friction Stir Welded Samples via Predictive Numerical Modeling and Experiments
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111009
.
24.
Ansari
,
M. A.
,
Agiwal
,
H.
,
Zinn
,
M.
,
Pfefferkorn
,
F.
, and
Rudraraju
,
S.
,
2022
, “
Novel Correlations Between Process Forces and Void Morphology for Effective Detection and Minimization of Voids During Friction Stir Welding
,”
ASME J. Manuf. Sci. Eng.
,
144
(
9
), p.
091007
.
25.
Fratini
,
L.
,
Buffa
,
G.
,
Palmeri
,
D.
,
Hua
,
J.
, and
Shivpuri
,
R.
,
2006
, “
Material Flow in FSW of AA7075-T6 Butt Joints: Continuous Dynamic Recrystallization Phenomena
,”
J. Eng. Mater. Technol.
,
128
(
3
), pp.
428
435
.
26.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
, Vol. 21, No. 1, pp.
541
547
.
27.
Ansari
,
M. A.
,
Samanta
,
A.
,
Behnagh
,
R. A.
, and
Ding
,
H.
,
2019
, “
An Efficient Coupled Eulerian-Lagrangian Finite Element Model for Friction Stir Processing
,”
Int. J. Adv. Manuf. Technol.
,
101
(
5–8
), pp.
1495
1508
.
28.
MatWeb
,
2018
,
“Material Property Data: Aluminum 3003-O, Aluminum 6061-T6; 6061-T651, Aluminum 7075-T6; 7075-T651, Aluminum 2024-T3
,” www.matweb.com
29.
Pan
,
W.
,
Li
,
D.
,
Tartakovsky
,
A. M.
,
Ahzi
,
S.
,
Khraisheh
,
M.
, and
Khaleel
,
M.
,
2013
, “
A New Smoothed Particle Hydrodynamics Non-Newtonian Model for Friction Stir Welding: Process Modeling and Simulation of Microstructure Evolution in a Magnesium Alloy
,”
Int. J. Plast.
,
48
(
1
), pp.
189
204
.
30.
HI
,
G. G.
,
Chen
,
S. R.
,
Wright
,
W.
, and
Lopez
,
M. F.
,
1994/Los Alamos National Laboratory Report: LA-12669-MS
,
Constitutive Equations for Annealed Metals Under Compression at High Strain Rates and High Temperatures
.
31.
Soundararajan
,
V.
,
Zekovic
,
S.
, and
Kovacevic
,
R.
,
2005
, “
Thermo-Mechanical Model With Adaptive Boundary Conditions for Friction Stir Welding of Al 6061
,”
Int. J. Mach. Tools Manuf.
,
45
(
14
), pp.
1577
1587
.
32.
Kim
,
D.
,
Badarinarayan
,
H.
,
Kim
,
J. H.
,
Kim
,
C.
,
Okamoto
,
K.
,
Wagoner
,
R. H.
, and
Chung
,
K.
,
2010
, “
Numerical Simulation of Friction Stir Butt Welding Process for AA5083-H18 Sheets
,”
Eur. J. Mech. A/Solids
,
29
(
2
), pp.
204
215
.
33.
Jamshidi
,
A. H.
,
Serajzadeh
,
S.
, and
Kokabi
,
A. H.
,
2011
, “
Evolution of Microstructures and Mechanical Properties in Similar and Dissimilar Friction Stir Welding of AA5086 and AA6061
,”
Mater. Sci. Eng. A
,
528
(
28
), pp.
8071
8083
.
34.
Narender
,
K.
,
Madhusudhan Rao
,
A. S.
,
Gopal Kishan Rao
,
K.
, and
Gopi Krishna
,
N.
,
2013
, “
Temperature Dependence of Density and Thermal Expansion of Wrought Aluminum Alloys 7041, 7075 and 7095 by Gamma Ray Attenuation Method
,”
J. Mod. Phys.
,
4
(
3
), pp.
331
336
.
35.
Brar
,
N. S.
,
Joshi
,
V. S.
, and
Harris
,
B. W.
,
2009
, “
Constitutive Model Constants for Al7075-T651 and Al7075-T6
,”
AIP Conference Proceedings
,
AIP
, vol. 1195, no. 1, pp.
945
948
.
36.
Summers
,
P. T.
,
Chen
,
Y.
,
Rippe
,
C. M.
,
Allen
,
B.
,
Mouritz
,
A. P.
,
Case
,
S. W.
, and
Lattimer
,
B. Y.
,
2015
, “
Overview of Aluminum Alloy Mechanical Properties During and After Fires
,”
Fire Sci. Rev.
,
4
(
1
), p.
3
.
37.
Krishnan
,
K. N.
,
2002
, “
On the Formation of Onion Rings in Friction Stir Welds
,”
Mater. Sci. Eng. A
,
327
(
2
), pp.
246
251
.
38.
Cole
,
E. G.
,
Fehrenbacher
,
A.
,
Duffie
,
N. A.
,
Zinn
,
M. R.
,
Pfefferkorn
,
F. E.
, and
Ferrier
,
N. J.
,
2014
, “
Weld Temperature Effects During Friction Stir Welding of Dissimilar Aluminum Alloys 6061-t6 and 7075-t6
,”
Int. J. Adv. Manuf. Technol.
,
71
(
1–4
), pp.
643
652
.
39.
Fratini
,
L.
,
Buffa
,
G.
,
Palmeri
,
D.
,
Hua
,
J.
, and
Shivpuri
,
R.
,
2006
, “
Material Flow in FSW of AA7075–T6 Butt Joints: Numerical Simulations and Experimental Verifications
,”
Sci. Technol. Weld. Join.
,
11
(
4
), pp.
412
421
.
You do not currently have access to this content.