Abstract

Accurate prediction of the forming limit at necking of strongly anisotropic thin-walled tubes is an urgent requirement in tube hydroforming. M–K model is one of the most widely used prediction models. However, the failure criterion in M–K model is based on the ratio of major true strain increments in the groove to uniform regions, which sometimes results in overestimation of the limit strains. To address this issue, a combined model of M–K model and ductile fracture criterion (DFC) for tube was proposed in this paper, in which the failure condition of the groove region is determined by the DFC. The characteristics of the M–K + DFC model were analyzed by combining with the DF2012 phenomenological DFC. To validate the M–K + DF2012 model, the limit strains at necking of an AA6061 tube with strong in-plane anisotropy were tested through tube-controllable biaxial loading experiments. The results show that the forming limit curve (FLC) predicted by the M–K + DFC model does not exceed the FLC calculated by the M–K model and the fracture forming limit curve (FFLC) determined by the corresponding DFC. The M–K + DF2012 model provides a reasonable forming limit prediction of the AA6061 tube, and the shortcoming of the M–K model mentioned earlier is overcome. Meanwhile, a reasonable constitutive model considering the in-plane anisotropy is very important in the forming limit prediction of a strongly anisotropic thin-walled tube.

References

1.
Yuan
,
S.
, and
Fan
,
X.
,
2019
, “
Developments and Perspectives on the Precision Forming Processes for Ultra-Large Size Integrated Components
,”
Int. J. Extr. Manuf.
,
1
(
2
), p.
22002
.
2.
Manabe
,
K.
, and
Fuchizawa
,
S.
,
2015
, “Further Development on Tube Hydroforming,”
60 Excellent Inventions in Metal Forming
,
A.E.
Tekkaya
,
W.
Homberg
, and
A.
Brosius
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
387
393
.
3.
Alaswad
,
A.
,
Benyounis
,
K. Y.
, and
Olabi
,
A. G.
,
2012
, “
Tube Hydroforming Process: A Reference Guide
,”
Mater. Des.
,
33
, pp.
328
339
.
4.
Korkolis
,
Y. P.
, and
Kyriakides
,
S.
,
2011
, “
Hydroforming of Anisotropic Aluminum Tubes: Part I Experiments
,”
Int. J. Mech. Sci.
,
53
(
2
), pp.
75
82
.
5.
Asnafi
,
N.
,
Nilsson
,
T.
, and
Lassl
,
G.
,
2003
, “
Tubular Hydroforming of Automotive Side Members With Extruded Aluminium Profiles
,”
J. Mater. Process. Tech.
,
142
(
1
), pp.
93
101
.
6.
Yuenyong
,
J.
,
Suthon
,
M.
,
Kingklang
,
S.
,
Thanakijkasem
,
P.
,
Mahabunphachai
,
S.
, and
Uthaisangsuk
,
V.
,
2018
, “
Formability Prediction for Tube Hydroforming of Stainless Steel 304 Using Damage Mechanics Model
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011006
.
7.
Magrinho
,
J. P.
,
Silva
,
M. B.
,
Centeno
,
G.
,
Moedas
,
F.
,
Vallellano
,
C.
, and
Martins
,
P. A. F.
,
2019
, “
On the Determination of Forming Limits in Thin-Walled Tubes
,”
Int. J. Mech. Sci.
,
155
, pp.
381
391
.
8.
Vallellano
,
C.
,
Morales
,
D.
, and
García-Lomas
,
F. J.
,
2008
, “
A Study to Predict Failure in Biaxially Stretched Sheets of Aluminum Alloy 2024-T3
,”
Mater. Manuf. Process.
,
23
(
3
), pp.
303
310
.
9.
Han
,
H. N.
, and
Kim
,
K.
,
2003
, “
A Ductile Fracture Criterion in Sheet Metal Forming Process
,”
J. Mater. Process. Technol.
,
142
(
1
), pp.
231
238
.
10.
Hashemi
,
R.
,
Assempour
,
A.
, and
Abad
,
E. M. K.
,
2009
, “
Implementation of the Forming Limit Stress Diagram to Obtain Suitable Load Path in Tube Hydroforming Considering M-K Model
,”
Mater. Des.
,
30
(
9
), pp.
3545
3553
.
11.
Hashemi
,
R.
,
Madoliat
,
R.
, and
Afshar
,
A.
,
2014
, “
Prediction of Forming Limit Diagrams Using the Modified M-K Method in Hydroforming of Aluminum Tubes
,”
Int. J. Mater. Form.
,
9
(
3
), pp.
297
303
.
12.
Marciniak
,
Z.
, and
Kuczyński
,
K.
,
1967
, “
Limit Strains in the Processes of Stretch-Forming Sheet Metal
,”
Int. J. Mech. Sci.
,
9
(
9
), pp.
609
620
.
13.
He
,
J.
,
Xia
,
Z. C.
,
Li
,
S.
, and
Zeng
,
D.
,
2013
, “
M-K Analysis of Forming Limit Diagram Under Stretch-Bending
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041017
.
14.
He
,
J.
,
Gu
,
B.
,
Li
,
Y.
, and
Li
,
S.
,
2018
, “
Forming Limits Under Stretch-Bending Through Distortionless and Distortional Anisotropic Hardening
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121013
.
15.
Banabic
,
D.
,
Kami
,
A.
,
Comsa
,
D.
, and
Eyckens
,
P.
,
2021
, “
Developments of the Marciniak-Kuczynski Model for Sheet Metal Formability: A Review
,”
J. Mater. Process. Technol.
,
287
, p.
116446
.
16.
Kuroda
,
M.
, and
Tvergaard
,
V.
,
2000
, “
Effect of Strain Path Change on Limits to Ductility of Anisotropic Metal Sheets
,”
Int. J. Mech. Sci.
,
42
(
5
), pp.
867
887
.
17.
Hiwatashi
,
S.
,
Bael
,
A. V.
,
Houtte
,
P. A.
, and
Teodosiu
,
C.
,
1998
, “
Prediction of Forming Limit Strains Under Strain-Path Changes: Application of an Anisotropic Model Based on Texture and Dislocation Structure
,”
Int. J. Plasticity
,
14
(
7
), pp.
647
669
.
18.
Banabic
,
D.
,
2010
,
Sheet Metal Forming Processes: Constitutive Modeling and Numerical Simulation
,
Springer-Verlag
,
Heidelberg
.
19.
Yang
,
X.
,
Lang
,
L.
,
Liu
,
K.
, and
Guo
,
C.
,
2015
, “
Modified MK Model Combined With Ductile Fracture Criterion and Its Application in Warm Hydroforming
,”
T. Nonferr. Metal. Soc.
,
25
(
10
), pp.
3389
3398
.
20.
He
,
Z.
,
Wang
,
Z.
,
Lin
,
Y.
,
Zhu
,
H.
, and
Yuan
,
S.
,
2019
, “
A Modified Marciniak-Kuczynski Model for Determining the Forming Limit of Thin-Walled Tube Extruded With Initial Eccentricity
,”
Int. J. Mech. Sci.
,
151
, pp.
715
723
.
21.
Nikhare
,
C. P.
,
2018
, “
Experimental and Numerical Investigation of Forming Limit Differences in Biaxial and Dome Test
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081005
.
22.
Banabic
,
D.
,
Comsa
,
D.
,
Eyckens
,
P.
,
Kami
,
A.
, and
Gologanu
,
M.
,
2016
, “Advanced Models for the Prediction of Forming Limit Curves,”
Multiscale Modelling in Sheet Metal Forming
,
D.
Banabic
, ed.,
Springer International Publishing
,
Cham
, pp.
205
300
.
23.
Zhang
,
R.
,
Shao
,
Z.
, and
Lin
,
J.
,
2018
, “
A Review on Modelling Techniques for Formability Prediction of Sheet Metal Forming
,”
Int. J. Lightweight Mater. Manuf.
,
1
(
3
), pp.
115
125
.
24.
Liu
,
J.
,
Wang
,
Z.
, and
Meng
,
Q.
,
2011
, “
Numerical Investigations on the Influence of Superimposed Double-Sided Pressure on the Formability of Biaxially Stretched AA6111-T4 Sheet Metal
,”
J. Mater. Eng. Perform.
,
21
(
4
), pp.
429
436
.
25.
Hosseini
,
M. E.
,
Hosseinipour
,
S. J.
, and
Bakhshi-Jooybari
,
M.
,
2017
, “
Theoretical FLD Prediction Based On M-K Model Using Gurson's Plastic Potential Function for Steel Sheets
,”
Procedia Eng.
,
183
, pp.
119
124
.
26.
Shahzamanian
,
M. M.
, and
Wu
,
P. D.
,
2021
, “
Study of Forming Limit Diagram (FLD) Prediction of Anisotropic Sheet Metals Using Gurson Model in M-K Method
,”
Int. J. Mater. Form.
,
14
(
5
), pp.
1031
1041
.
27.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall
,
32
(
1
), pp.
157
169
.
28.
Simha
,
C. H. M.
,
Grantab
,
R.
, and
Worswick
,
M. J.
,
2007
, “
Computational Analysis of Stress-Based Forming Limit Curves
,”
Int. J. Solids Struct.
,
44
(
25
), pp.
8663
8684
.
29.
Hu
,
P.
,
Liu
,
W.
,
Ying
,
L.
,
Zhang
,
J.
, and
Wang
,
D.
,
2017
, “
A Thermal Forming Limit Prediction Method Considering Material Damage for 22MnB5 Sheet
,”
Int. J. Adv. Manuf. Technol.
,
92
(
1–4
), pp.
627
638
.
30.
Zadpoor
,
A. A.
,
Sinke
,
J.
, and
Benedictus
,
R.
,
2009
, “
Formability Prediction of High Strength Aluminum Sheets
,”
Int. J. Plasticity
,
25
(
12
), pp.
2269
2297
.
31.
Clift
,
S. E.
,
Hartley
,
P.
,
Sturgess
,
C. E. N.
, and
Rowe
,
G. W.
,
1990
, “
Fracture Prediction in Plastic Deformation Processes
,”
Int. J. Mech. Sci.
,
32
(
1
), pp.
1
17
.
32.
McClintock
,
F.
,
1968
, “
A Criterion for Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
363
371
.
33.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2010
, “
Application of Extended Mohr–Coulomb Criterion to Ductile Fracture
,”
Int. J. Fracture
,
161
(
1
), pp.
1
20
.
34.
Lou
,
Y.
,
Huh
,
H.
,
Lim
,
S.
, and
Pack
,
K.
,
2012
, “
New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals
,”
Int. J. Solids Struct.
,
49
(
25
), pp.
3605
3615
.
35.
Kuwabara
,
T.
,
Ishiki
,
M.
,
Kuroda
,
M.
, and
Takahashi
,
S.
,
2003
, “
Yield Locus and Work Hardening Behavior of a Thin-Walled Steel Tube Subjected to Combined Tension-Internal Pressure
,”
J. Phys. IV
,
105
(
3
), pp.
347
354
.
36.
Kuwabara
,
T.
,
Yoshida
,
K.
,
Narihara
,
K.
, and
Takahashi
,
S.
,
2005
, “
Anisotropic Plastic Deformation of Extruded Aluminum Alloy Tube Under Axial Forces and Internal Pressure
,”
Int. J. Plasticity
,
21
(
1
), pp.
101
117
.
37.
Zhang
,
K.
,
He
,
Z.
,
Zheng
,
K.
, and
Yuan
,
S.
,
2020
, “
Experimental Verification of Anisotropic Constitutive Models Under Tension-Tension and Tension-Compression Stress States
,”
Int. J. Mech. Sci.
,
178
, p.
105618
.
38.
He
,
Z.
,
Zhang
,
K.
,
Lin
,
Y.
, and
Yuan
,
S.
,
2020
, “
An Accurate Determination Method for Constitutive Model of Anisotropic Tubular Materials with DIC-Based Controlled Biaxial Tensile Test
,”
Int. J. Mech. Sci.
,
181
, p.
105715
.
39.
Scales
,
M.
,
Chen
,
K.
, and
Kyriakides
,
S.
,
2021
, “
Response, Localization, and Rupture of Anisotropic Tubes Under Combined Pressure and Tension
,”
ASME J. Appl. Mech.
,
88
(
1
), p.
011008
.
40.
Martínez-Donaire
,
A. J.
,
García-Lomas
,
F. J.
, and
Vallellano
,
C.
,
2014
, “
New Approaches to Detect the Onset of Localised Necking in Sheets Under Through-Thickness Strain Gradients
,”
Mater. Des.
,
57
, pp.
135
145
.
41.
Hora
,
P.
,
Tong
,
L.
, and
Berisha
,
B.
,
2013
, “
Modified Maximum Force Criterion, a Model for the Theoretical Prediction of Forming Limit Curves
,”
Int. J. Mater. Form.
,
6
(
2
), pp.
267
279
.
42.
Wei
,
J.
,
Yang
,
L.
, and
Guo
,
J.
,
2018
, “
The Method to Determine Material Constants in Ductile Fracture Criterion
,”
Solid State Phenomena
,
279
, pp.
85
91
.
43.
Yang
,
Z.
,
Zhao
,
C.
,
Dong
,
G.
, and
Chen
,
Z.
,
2021
, “
Experimental Calibration of Ductile Fracture Parameters and Forming Limit of AA7075-T6 Sheet
,”
J. Mater. Process. Technol.
,
291
, p.
117044
.
44.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shell
,
McGraw-Hill Book Co, Inc.
,
New York
.
45.
Cui
,
X.
,
Wang
,
X.
, and
Yuan
,
S.
,
2014
, “
Experimental Verification of the Influence of Normal Stress on the Formability of Thin-Walled 5A02 Aluminum Alloy Tubes
,”
Int. J. Mech. Sci.
,
88
, pp.
232
243
.
46.
Zhang
,
F.
,
Chen
,
J.
, and
Chen
,
J.
,
2014
, “
Effect of Through-Thickness Normal Stress on Forming Limits Under Yld2003 Yield Criterion and M-K Model
,”
Int. J. Mech. Sci.
,
89
, pp.
92
100
.
47.
Barlat
,
F.
,
Brem
,
J. C.
,
Yoon
,
J. W.
,
Chung
,
K.
,
Dick
,
R. E.
,
Lege
,
D. J.
,
Pourboghrat
,
F.
,
Choi
,
S. H.
, and
Chu
,
E.
,
2003
, “
Plane Stress Yield Function for Aluminum Alloy Sheets—Part 1: Theory
,”
Int. J. Plasticity
,
19
(
9
), pp.
1297
1319
.
48.
Banabic
,
D.
,
2016
, “
Advances in Plastic Anisotropy and Forming Limits in Sheet Metal Forming
,”
ASME J. Manuf. Sci. Eng.
,
138
(
9
), p.
090801
.
49.
Korkolis
,
Y. P.
, and
Kyriakides
,
S.
,
2008
, “
Inflation and Burst of Anisotropic Aluminum Tubes for Hydroforming Applications
,”
Int. J. Plasticity
,
24
(
3
), pp.
509
543
.
50.
Mousavi
,
F.
,
Hashemi
,
R.
, and
Madoliat
,
R.
,
2018
, “
Measurement of Directional Anisotropy Coefficients for AA7020-T6 Tubes and Prediction of Forming Limit Curve
,”
Int. J. Adv. Manuf. Technol.
,
96
(
1–4
), pp.
1015
1023
.
You do not currently have access to this content.