Abstract

Three-dimensional sheet metal forming is one of the biggest challenges in the shipbuilding industry. The forming quality of the traditionally applied line heating method depends entirely on the skills of the technicians. Moreover, this approach is inefficient and error-prone. This calls for a need to develop new forming technologies that are easy to control and more efficient. In this paper, a novel forming method called heat-assisted incremental bending is presented. The minimum energy loading path of bidirectional curvature sheet along the direction of Gaussian curvature is adapted to deform the sheet metals with a convex shape surface. Besides, the auxiliary heating method and the auxiliary supporting are exclusively included in the forming process to improve the formability and accuracy. In this study, the convex-shaped sheet metal with large curvature is obtained along the two loading trajectories in two principal curvature directions, respectively. Results proved that using the minimum energy loading trajectory and including the auxiliary supports and heating can reduce the forming force to the greatest extent and effectively reduce the number of stamping points, thus improving the sheet metal forming efficiency and forming accuracy.

References

1.
Li
,
M. Z.
,
Cai
,
Z. Y.
,
Sui
,
Z.
, and
Yan
,
Q. G.
,
2002
, “
Multi-Point Forming Technology for Sheet Metal
,”
J. Mater. Process. Technol.
,
129
(
1
), pp.
333
338
.
2.
Liu
,
C. G.
,
Li
,
M. Z.
, and
Fu
,
W. Z.
,
2008
, “
Principles and Apparatus of Multi-point Forming for Sheet Metal
,”
Int. J. Adv. Manuf. Technol.
,
35
(
11–12
), pp.
1227
1233
.
3.
He
,
L. P.
,
Li
,
M. Z.
,
Liu
,
C. G.
, and
Cao
,
J.
,
2013
, “
Study of Multi-Point Forming for Polycarbonate Sheet
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
2811
2817
.
4.
Liu
,
Y. J.
,
Li
,
M. Z.
, and
Ju
,
F. F.
,
2017
, “
Research on the Process of Flexible Blank Holder in Multi-point Forming for Spherical Surface Parts
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
2315
2322
.
5.
Chen
,
J.
,
Fu
,
W. Z.
, and
Li
,
M. Z.
,
2017
, “
Local Bending Effect and Its Controlling Methods in Multi-point Forming
,”
Int. J. Adv. Manuf. Technol.
,
92
(
9–12
), pp.
4315
4322
.
6.
Qu
,
E. H.
,
Li
,
M. Z.
,
Li
,
R.
,
Liang
,
Z.
, and
Zhuo
,
Y.
,
2018
, “
Inhibitory Effects of a Flexible Steel Pad on Wrinkling in Multi-point Die Forming
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
2413
2420
.
7.
Qu
,
E. H.
,
Li
,
M. Z.
,
Li
,
R.
,
Cui
,
M. Y.
, and
Lin
,
J. L.
,
2018
, “
Research on Formability in Multi-point Forming With Different Elastic Pads
,”
Int. J. Adv. Manuf. Technol.
,
98
(
5–8
), pp.
1887
1901
.
8.
Cui
,
M. Y.
,
Li
,
M. Z.
,
Qu
,
E. H.
,
Zheng
,
C. Y.
, and
Sun
,
Y. M.
,
2018
, “
Research on Transition Region in Sectional Multi-point Forming of Saddle-Shaped Parts
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
4445
4453
.
9.
Su
,
S. J.
,
Hu
,
Y.
, and
Wang
,
C. F.
,
2015
, “
The Key Technology Research About 3D CNC Bending Machine and Experimental Verification
,”
J. Coastal. Res.
,
73
(
73
), pp.
584
588
.
10.
Luo
,
Y. X.
,
Yang
,
W. M.
,
Liu
,
Z. F.
,
Wang
,
Y. Q.
, and
Du
,
R. X.
,
2016
, “
Numerical Simulation and Experimental Study on Cyclic Multi-point Incremental Forming Process
,”
Int. J. Adv. Manuf. Technol.
,
85
(
5–8
), pp.
1249
1259
.
11.
Shim
,
D. S.
,
Yang
,
D. Y.
,
Kim
,
K. H.
,
Han
,
M. S.
, and
Chuang
,
S. W.
,
2009
, “
Numerical and Experimental Investigation Into Cold Incremental Rolling of Doubly Curved Plates for Process Design of a New LARS (Line Array Roll Set) Rolling Process
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
239
242
.
12.
Shim
,
D. S.
,
Yang
,
D. Y.
,
Kim
,
K. H.
,
Chung
,
S. W.
, and
Han
,
M. S.
,
2010
, “
Investigation Into Forming Sequences for the Incremental Forming of Doubly Curved Plates Using the Line Array Roll Set Process
,”
Int. J. Mach. Tool. Manuf.
,
50
(
2
), pp.
214
218
.
13.
Cai
,
Z. Y.
,
Li
,
M. Z.
, and
Lan
,
Y. W.
,
2012
, “
Three-Dimensional Sheet Metal Continuous Forming Process Based on Flexible Roll Bending: Principle and Experiments
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
120
127
.
14.
Cai
,
Z. Y.
,
Li
,
L. L.
, and
Wang
,
M.
,
2014
, “
Process Design and Longitudinal Deformation Prediction in Continuous Sheet Metal Roll Forming for Three-Dimensional Surface
,”
Int. J. Precis. Eng. Manuf.
,
15
(
9
), pp.
1889
1895
.
15.
Li
,
R. J.
,
Li
,
M. Z.
,
Qiu
,
N. J.
, and
Cai
,
Z. W.
,
2014
, “
Surface Flexible Rolling for Three-Dimensional Sheet Metal Parts
,”
J. Mater. Process. Technol.
,
214
(
2
), pp.
380
389
.
16.
Tavakoli
,
A.
,
Naeini
,
H. M.
,
Roohi
,
A. H.
,
Gollo
,
M. H.
, and
Shahabad
,
S. I.
,
2017
, “
Determining Optimized Radial Scan Path in 3D Laser Forming of Steel AISI 304 Plates to Produce Bowl Shapes
,”
Int. J. Adv. Manuf. Technol.
,
91
(
9–12
), pp.
3457
3465
.
17.
Yang
,
L. J.
,
Wang
,
M. L.
,
Wang
,
Y.
, and
Chen
,
Y. B.
,
2010
, “
Dynamic Analysis on Laser Forming of Square Metal Sheet to Spherical Dome
,”
Int. J. Adv. Manuf. Technol.
,
51
(
5–8
), pp.
519
539
.
18.
Shahabad
,
S. I.
,
Naeini
,
H. M.
,
Roohi
,
A. H.
,
Tavakoli
,
A.
, and
Nasrollahzade
,
M.
,
2017
, “
Experimental Investigation of Laser Forming Process to Produce Dome-Shaped Products
,”
Int. J. Adv. Manuf. Technol.
,
90
(
1–4
), pp.
1051
1057
.
19.
Liu
,
C.
, and
Yao
,
Y. L.
,
2005
, “
FEM-Based Process Design for Laser Forming of Doubly Curved Shapes
,”
J. Mater. Process. Technol.
,
7
(
2
), pp.
109
121
.
20.
Chakraborty
,
S. S.
,
More
,
H.
, and
Nath
,
A. K.
,
2016
, “
Laser Forming of a Bowl Shaped Surface With a Stationary Laser Beam
,”
Opt. Laser. Eng.
,
77
, pp.
126
136
.
21.
Hong
,
S.
,
Zhou
,
W. T.
, and
Wang
,
H.
,
2018
, “
Laser Forming of Doubly Curved Plates Using Minimum Energy Principle and Comprehensive Strain Control
,”
Int. J. Mech. Sci.
,
145
, pp.
42
52
.
22.
Xu
,
L.
,
Li
,
W. D.
, and
Wan
,
M.
,
2015
, “
Laser Bending Process of Preloaded Sheet Metal
,”
MATEC Web of Conferences
, Vol.
21
, pp.
1
7
.
23.
Yanjin
,
G.
,
Sheng
,
S.
,
Guoqun
,
Z.
, and
Yiguo
,
L.
,
2003
, “
Finite Element Modeling of Laser Bending of Pre-Loaded Sheet Metals
,”
J. Mater. Process. Technol.
,
142
(
2
), pp.
400
407
.
24.
Yao
,
Z. Q.
,
Hong
,
S.
,
Shi
,
Y. J.
, and
Hu
,
J.
,
2007
, “
Numerical Study on Laser Forming of Sheet Metals With Pre-Loads. Comp
,”
Mater. Sci.
,
40
(
1
), pp.
27
32
.
25.
Wang
,
C. T.
,
Kinzel
,
G.
, and
Altan
,
T.
,
1993
, “
Mathematical Modeling of Plane-Strain Bending of Sheet and Plate
,”
J. Mater. Process. Technol.
,
39
(
3
), pp.
279
304
.
26.
Yang
,
X.
,
Choi
,
C.
,
Sever
,
N. K.
, and
Altan
,
T.
,
2016
, “
Prediction of Springback in Air-Bending of Advanced High Strength Steel (DP780) Considering Young’s Modulus Variation and With a Piecewise Hardening Function
,”
Int. J. Mech. Sci.
,
105
, pp.
266
272
.
27.
Khadra
,
F. A.
, and
Elmorsy
,
A. W.
,
2016
, “
Prediction of Springback in the Air Bending Process Using a Kriging Metamodel
,”
Eng. Technol. Appl. Sci.
,
6
(
5
), pp.
1200
1206
.
28.
Johnson
,
W.
, and
Yu
,
T. X.
,
1981
, “
Springback After the Biaxial Elastic-Plastic Pure Bending of a Rectangular Plate-I
,”
Int. J. Mech. Sci.
,
23
(
10
), pp.
619
630
.
29.
Borah
,
U.
,
Venugopal
,
S.
,
Nagarajan
,
R.
,
Sivaprasad
,
P. V.
,
Venugopal
,
S.
, and
Raj
,
B.
,
2008
, “
Estimation of Springback in Double-Curvature Forming of Plates: Experimental Evaluation and Process Modeling
,”
Int. J. Mech. Sci.
,
50
(
4
), pp.
704
718
.
30.
Zhang
,
Q. F.
,
Cai
,
Z. Y.
,
Zhang
,
Y.
,
Zhang
,
Y.
, and
Li
,
M. Z.
,
2013
, “
Springback Compensation Method for Doubly Curved Plate in Multi-Point Forming
,”
Mater. Des.
,
47
, pp.
377
385
.
31.
Asnafi
,
N.
,
2001
, “
On Springback of Double-Curved Autobody Panels
,”
Int. J. Mech. Sci.
,
43
(
1
), pp.
5
37
.
32.
Lee
,
E. H.
,
Yang
,
D. Y.
,
Yoon
,
J. W.
, and
Yang
,
W. H.
,
2015
, “
Numerical Modeling and Analysis for Forming Process of Dual-Phase 980 Steel Exposed to Infrared Local Heating
,”
Int. J. Solids Struct.
,
75–76
, pp.
211
224
.
33.
Gisario
,
A.
,
Barletta
,
M.
,
Venettacci
,
S.
, and
Veniali
,
F.
,
2015
, “
Laser-Assisted Bending of Sharp Angles With Small Fillet Radius on Stainless Steel Sheets: Analysis of Experimental Set-Up and Processing Parameters
,”
Lasers Manuf. Mater. Process.
,
2
(
2
), pp.
57
73
.
34.
Liu
,
P.
,
Zhang
,
T. C.
,
Guo
,
B.
,
Yang
,
L.
,
Shan
,
D.
, and
Zong
,
Y.
,
2019
, “
Deformation Path and Springback Behavior in Double-Curved Bending at High Temperature
,”
J. Mech. Sci. Technol.
,
33
(
9
), pp.
4361
4370
.
35.
Wang
,
A.
,
Zhong
,
K.
,
El Fakir
,
O.
,
Liu
,
J.
,
Sun
,
C.
,
Wang
,
L.-L.
,
Lin
,
J.
, and
Dean
,
T. A.
,
2017
, “
Springback Analysis of AA5754 After Hot Stamping: Experiments and FE Modelling
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5
), pp.
1339
1352
.
36.
Saito
,
N.
,
Fukahori
,
M.
,
Minote
,
T.
,
Funakawa
,
Y.
,
Hisano
,
D.
,
Hamasaki
,
H.
, and
Yoshida
,
F.
,
2018
, “
Elasto-Viscoplastic Behavior of 980 MPa Nano-Precipitation Strengthened Steel Sheet at Elevated Temperatures and Springback in Warm Bending
,”
Int. J. Mech. Sci.
,
146–147
, pp.
571
582
.
37.
Liu
,
C.
,
Yao
,
Y. L.
, and
Srinivasan
,
V.
,
2004
, “
Optimal Process Planning for Laser Forming of Doubly Curved Shapes
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
1
9
.
38.
Dang
,
X. B.
,
He
,
K.
,
Li
,
W.
,
Zuo
,
Q. Y.
, and
Du
,
R. X.
,
2019
, “
Incremental Bending of Three-Dimensional Free Form Metal Plates Using Minimum Energy Principle and Model-Less Control
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071009
.
39.
Wei
,
B.
,
Wei
,
Y. N.
,
Zhang
,
F. F.
,
He
,
K.
,
Dang
,
X. B.
, and
Du
,
R. X.
,
2021
, “
Springback Control and Plastic Deformation of Sheet Metals With Large Curvature in Heat-Assisted Incremental Bending Process
,”
Int. J. Adv. Manuf. Technol.
,
112
(
5–6
), pp.
1483
1500
.
40.
Zhang
,
F. F.
,
Zhang
,
J.
,
Zuo
,
Q. Y.
,
Dang
,
X. B.
, and
He
,
K.
,
2019
, “
Experimental and Numerical Study on Deformation Behavior of Doubly Curved Sheet Metals During Incremental Bending Process
,”
Int. J. Adv. Manuf. Technol.
,
104
(
5–8
), pp.
2739
2750
.
You do not currently have access to this content.