Abstract

In this study, an epoxy resin, YZ-05, designed specifically for carbon fiber reinforced polymer prepregs, was characterized and modeled. A degassing method for the highly viscous YZ-05 was established for specimen preparation. To numerically model the behavior of YZ-05 in curing, several components, including the heat transfer, curing kinetics, and viscoelastic constitutive law ones, were developed, and the corresponding material properties to be input were tested. As YZ-05 shows severe creep at high temperature under mechanical loading, the combination of digital image correlation (DIC) and thermography technique was utilized to obtain its thermal expansion and chemical shrinkage. In the aspects of viscoelastic behavior, stress relaxation tests were performed based on time–temperature superposition principle with a numerical method to calculate shift factors. After development and input identification, these modeling components for YZ-05 resin were integrated and the modeling results were validated using experiments, where bending of resin beams was induced during curing.

References

1.
Zhang
,
W.
,
Bostanabad
,
R.
,
Liang
,
B.
,
Su
,
X.
,
Zeng
,
D.
,
Bessa
,
M. A.
,
Wang
,
Y.
,
Chen
,
W.
, and
Cao
,
J.
,
2019
, “
A Numerical Bayesian-Calibrated Characterization Method for Multiscale Prepreg Preforming Simulations With Tension-Shear Coupling
,”
Compos. Sci. Technol.
,
170
, pp.
15
24
.
2.
Lim
,
Y. C.
,
Chen
,
J.
,
Jun
,
J.
,
Leonard
,
D. N.
,
Brady
,
M. P.
,
Warren
,
C. D.
, and
Feng
,
Z.
,
2020
, “
Mechanical and Corrosion Assessment of Friction Self-piercing Rivet Joint of Carbon Fiber-Reinforced Polymer and Magnesium Alloy AZ31B
,”
ASME J. Manuf. Sci. Eng.
,
143
(
3
), p.
031006
.
3.
Dai
,
J.
,
Xi
,
S.
, and
Li
,
D.
,
2019
, “
Numerical Analysis of Curing Residual Stress and Deformation in Thermosetting Composite Laminates With Comparison Between Different Constitutive Models
,”
Materials (Basel)
,
12
(
4
), p.
572
.
4.
Zhu
,
Q.
,
2001
,
Dimensional Accuracy of Thermoset Polymer Composites: Process Simulation and Optimization
,
ProQuest Dissertations Publishing
,
Ann Arbor, MI
.
5.
Granado
,
L.
,
Kempa
,
S.
,
Bremmert
,
S.
,
Gregoriades
,
L. J.
,
Brüning
,
F.
,
Anglaret
,
E.
, and
Fréty
,
N.
,
2017
, “
Isothermal DSC Study of the Curing Kinetics of an Epoxy/Silica Composite for Microelectronics
,”
J. Microelectron. Electron. Packag.
,
14
(
2
), pp.
45
50
.
6.
Yeo
,
H.
,
2018
, “
Curing Kinetics of Liquid Crystalline 4, 4′-Diglycidyloxybiphenyl Epoxy Cured With 4, 4′-Diaminodiphenylsulfone
,”
Polymer
,
159
, pp.
6
11
.
7.
Zhao
,
Y.
, and
Drummer
,
D.
,
2019
, “
Influence of Filler Content and Filler Size on the Curing Kinetics of an Epoxy Resin
,”
Polymers
,
11
(
11
), p.
1797
.
8.
Saad
,
M. T.
,
Miller
,
S. G.
, and
Marunda
,
T.
,
2014
, “
Thermal Characterization of IM7/8552-1 Carbon-Epoxy Composites
,”
ASME 2014 International Mechanical Engineering Congress and Exposition
,
Montreal, Quebec, Canada
,
Nov. 14–20
.
9.
Meira de Souza
,
L. G.
,
da Silva
,
E. J.
, and
Meira de Souza
,
L. G. V.
,
2020
, “
Obtaining and Characterizing a Polyester Resin and Cement Powder Composites
,”
Mater. Res.
,
23
(
5
).
10.
Hu
,
H.
,
Li
,
S.
,
Wang
,
J.
,
Zu
,
L.
,
Cao
,
D.
, and
Zhong
,
Y.
,
2017
, “
Monitoring the Gelation and Effective Chemical Shrinkage of Composite Curing Process With a Novel FBG Approach
,”
Compos. Struct.
,
176
, pp.
187
194
.
11.
Khoun
,
L.
,
Centea
,
T.
, and
Hubert
,
P.
,
2010
, “
Characterization Methodology of Thermoset Resins for the Processing of Composite Materials—Case Study: CYCOM 890RTM Epoxy Resin
,”
J. Compos. Mater.
,
44
(
11
), pp.
1397
1415
.
12.
Choi
,
S. H.
, and
Yoon
,
S. H.
,
2019
, “
Prediction of Long-Term Viscoelastic Performance of PET Film Using RH-DMA
,”
Compos. Res.
,
32
(
6
), pp.
382
387
.
13.
Miller
,
T.
,
Wojnar
,
C.
, and
Louke
,
J.
,
2017
, “
Measuring Propellant Stress Relaxation Modulus Using Dynamic Mechanical Analyzer
,”
J. Propul. Power
,
33
(
5
), pp.
1252
1259
.
14.
Ghosh
,
S. K.
,
Rajesh
,
P.
,
Srikavya
,
B.
,
Rathore
,
D. K.
,
Prusty
,
R. K.
, and
Ray
,
B. C.
,
2018
, “
Creep Behaviour Prediction of Multi-layer Graphene Embedded Glass Fiber/Epoxy Composites Using Time–Temperature Superposition Principle
,”
Composites, Part A
,
107
, pp.
507
518
.
15.
Nakada
,
M.
, and
Miyano
,
Y.
,
2015
, “
Advanced Accelerated Testing Methodology for Long-Term Life Prediction of CFRP Laminates
,”
J. Compos. Mater.
,
49
(
2
), pp.
163
175
.
16.
Ahmed
,
J.
,
2017
, “Time–Temperature Superposition Principle and Its Application to Biopolymer and Food Rheology,”
Advances in Food Rheology and Its Applications
,
J.
Ahmed
,
P.
Ptaszek
, and
S.
Basu
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
209
241
.
17.
Buttlar
,
W. G.
,
Roque
,
R.
, and
Reid
,
B.
,
1998
, “
Automated Procedure for Generation of Creep Compliance Master Curve for Asphalt Mixtures
,”
Transp. Res. Rec.
,
1630
(
1
), pp.
28
36
.
18.
Naya
,
S.
,
Meneses
,
A.
,
Tarrío-Saavedra
,
J.
,
Artiaga
,
R.
,
López-Beceiro
,
J.
, and
Gracia-Fernández
,
C.
,
2013
, “
New Method for Estimating Shift Factors in Time–Temperature Superposition Models
,”
J. Therm. Anal. Calorim.
,
113
(
2
), pp.
453
460
.
19.
Liu
,
X.
,
Luo
,
W.
, and
Li
,
M.
,
2015
, “
A Novel Approach for Constructing Master Curves of Rheological Simple Material
,”
Chin. J. Solid Mech.
,
36
(
3
), pp.
223
232
.
20.
Skoczylas
,
J.
,
Samborski
,
S.
, and
Kłonica
,
M.
,
2021
, “
A Multilateral Study on the FRP Composite’s Matrix Strength and Damage Growth Resistance
,”
Compos. Struct.
,
263
, p.
113752
.
21.
Kravchenko
,
O. G.
,
Kravchenko
,
S. G.
,
Casares
,
A.
, and
Pipes
,
R. B.
,
2015
, “
Digital Image Correlation Measurement of Resin Chemical and Thermal Shrinkage After Gelation
,”
J. Mater. Sci.
,
50
(
15
), pp.
5244
5252
.
22.
Puentes
,
J.
,
Restrepo-Zapata
,
N. C.
,
Chaloupka
,
A.
,
Duddleston
,
L. J. L.
,
Rudolph
,
N.
, and
Osswald
,
T. A.
,
2017
, “
Quasi-Isothermal DSC Testing of Epoxy Adhesives Using Initial Fast Heating Rates
,”
J. Appl. Polym. Sci.
,
134
(
42
), p.
45425
.
23.
Ren
,
R.
,
Xiong
,
X.
,
Ma
,
X.
,
Liu
,
S.
,
Wang
,
J.
,
Chen
,
P.
, and
Zeng
,
Y.
,
2016
, “
Isothermal Curing Kinetics and Mechanism of DGEBA Epoxy Resin With Phthalide-Containing Aromatic Diamine
,”
Thermochim. Acta
,
623
, pp.
15
21
.
24.
Ryu
,
S. H.
,
Sin
,
J. H.
, and
Shanmugharaj
,
A. M.
,
2014
, “
Study on the Effect of Hexamethylene Diamine Functionalized Graphene Oxide on the Curing Kinetics of Epoxy Nanocomposites
,”
Eur. Polym. J.
,
52
, pp.
88
97
.
25.
Gómez-Jimenez
,
S.
,
Becerra-Ferreiro
,
A.
,
Jareño-Betancourt
,
E.
, and
Vázquez-Penagos
,
J.
,
2021
, “
Phenomenological Analysis of the Cured Kinetics in the Order n of the Reaction As a Function of the Temperature of an EPDM Polymer
,”
ASME J. Manuf. Sci. Eng.
,
143
(
8
), p.
081011
.
26.
Kenny
,
J. M.
,
1994
, “
Determination of Autocatalytic Kinetic Model Parameters Describing Thermoset Cure
,”
J. Appl. Polym. Sci.
,
51
(
4
), pp.
761
764
.
27.
ASTM D792-20
,
2020
,
Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement
,
ASTM International
,
West Conshohocken, PA
28.
ASTM E1269-11
,
2018
,
Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry
,
ASTM International
,
West Conshohocken, PA
29.
Fesko
,
D. G.
, and
Tschoegl
,
N. W.
,
1971
, “
Time–Temperature Superposition in Thermorheologically Complex Materials
,”
J. Polym. Sci., Part C: Polym. Symp.
,
35
(
1
), pp.
51
69
.
30.
Kim
,
Y. K.
, and
White
,
S. R.
,
1996
, “
Stress Relaxation Behavior of 3501-6 Epoxy Resin During Cure
,”
Polym. Eng. Sci.
,
36
(
23
), pp.
2852
2862
.
31.
ASTM E1461-13
,
2013
,
Standard Test Method for Thermal Diffusivity by the Flash Method
,
ASTM International
,
West Conshohocken, PA
32.
Zhang
,
J. T.
,
Zhang
,
M.
,
Li
,
S. X.
,
Pavier
,
M. J.
, and
Smith
,
D. J.
,
2016
, “
Residual Stresses Created During Curing of a Polymer Matrix Composite Using a Viscoelastic Model
,”
Compos. Sci. Technol.
,
130
, pp.
20
27
.
33.
Ahn
,
H.
,
Park
,
T.
,
Li
,
Y.
,
Yeo
,
S. Y.
, and
Pourboghrat
,
F.
,
2021
, “
Mechanical Analysis of a Thermo-Hydroforming Fiber-Reinforced Composite Using a Preferred Fiber Orientation Model and Considering Viscoelastic Properties
,”
ASME J. Manuf. Sci. Eng.
,
144
(
2
), p.
021008
.
34.
ASTM D7028-07
,
2015
,
Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA)
,
ASTM International
,
West Conshohocken, PA
35.
ASTM E1545-11
,
2016
,
Standard Test Method for Assignment of the Glass Transition Temperature by Thermomechanical Analysis
,
ASTM International
,
West Conshohocken, PA
36.
Zarrelli
,
M.
,
Skordos
,
A. A.
, and
Partridge
,
I. K.
,
2002
, “
Investigation of Cure Induced Shrinkage in Unreinforced Epoxy Resin
,”
Plast. Rubber Compos.
,
31
(
9
), pp.
377
384
.
37.
O'Brien
,
D. J.
,
Mather
,
P. T.
, and
White
,
S. R.
,
2001
, “
Viscoelastic Properties of an Epoxy Resin During Cure
,”
J. Compos. Mater.
,
35
(
10
), pp.
883
904
.
38.
Ruiz
,
E.
, and
Trochu
,
F.
,
2005
, “
Thermomechanical Properties During Cure of Glass-Polyester RTM Composites: Elastic and Viscoelastic Modeling
,”
J. Compos. Mater.
,
39
(
10
), pp.
881
916
.
39.
ASTM D638-14
,
2014
,
Standard Test Method for Tensile Properties of Plastics
,
ASTM International
,
West Conshohocken, PA
.
40.
Bogetti
,
T. A.
, and
Gillespie
,
J. W.
, Jr.
,
1992
, “
Process-Induced Stress and Deformation in Thick-Section Thermoset Composite Laminates
,”
J. Compos. Mater.
,
26
(
5
), pp.
626
660
.
You do not currently have access to this content.