Abstract

A super-layer deposition method is developed for 3D macroscopic finite element modeling of heat transfer at part scale during the powder bed fusion (PBF) process. The proposed super-layer strategy consists of the deposition of batches of several layers. The main consideration is to deal with the effective heating times and with the inter-layer dwell time in a reasonable way. The material is deposited at once for each super-layer thanks to level set and mesh adaptation methods, while the energy input is prescribed, either by respecting the layer-by-layer thermal cycle or in a single thermal load. The level set method is used twice: first to track the interface between gas and the successive super-layers of powder bed and second to track the interface between the part in construction and the nonexposed powder. To preserve simulation accuracy, adaptive remeshing is used to maintain a fine mesh near the evolving construction front during the process. Simulation results obtained by means of this super-layer method are presented and discussed by comparison with those obtained by layer-by-layer strategy, considered here as a reference. It is shown that, when respecting certain conditions, temperature evolutions and distributions approaching the reference ones can be obtained with significant savings on computation time. Assessment is first performed on simple part, then on a more complex configuration.

References

1.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Ramirez
,
D. A.
,
Martinez
,
E.
,
Hernandez
,
J.
,
Amato
,
K. N.
,
Shindo
,
P. W.
,
Medina
,
F. R.
, and
Wicker
,
R. B.
,
2012
, “
Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies
,”
J. Mater. Sci. Technol.
,
28
(
1
), pp.
1
14
.
2.
Bandyopadhyay
,
A.
, and
Heer
,
B.
,
2018
, “
Additive Manufacturing of Multi-Material Structures
,”
Mater. Sci. Eng. R Rep.
,
129
, pp.
1
16
.
3.
Körner
,
C.
,
Attar
,
E.
, and
Heinl
,
P.
,
2011
, “
Mesoscopic Simulation of Selective Beam Melting Processes
,”
J. Mater. Process. Technol.
,
211
(
6
), pp.
978
987
.
4.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.
5.
Bayat
,
M.
,
Thanki
,
A.
,
Mohanty
,
S.
,
Witvrouw
,
A.
,
Yang
,
S.
,
Thorborg
,
J.
,
Tiedje
,
N. S.
, and
Hattel
,
J. H.
,
2019
, “
Keyhole-Induced Porosities in Laser-Based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-Fidelity Modelling and Experimental Validation
,”
Addit. Manuf.
,
30
, p.
100835
.
6.
Bayat
,
M.
,
Mohanty
,
S.
, and
Hattel
,
J. H.
,
2019
, “
Multiphysics Modelling of Lack-of-Fusion Voids Formation and Evolution in IN718 Made by Multi-Track/Multi-Layer L-PBF
,”
Int. J. Heat Mass Transfer
,
139
, pp.
95
114
.
7.
Chen
,
Q.
,
Guillemot
,
G.
,
Gandin
,
C.-A.
, and
Bellet
,
M.
,
2017
, “
Three-Dimensional Finite Element Thermomechanical Modeling of Additive Manufacturing by Selective Laser Melting for Ceramic Materials
,”
Addit. Manuf.
,
16
, pp.
124
137
.
8.
Chen
,
Q.
,
Guillemot
,
G.
,
Gandin
,
C.-A.
, and
Bellet
,
M.
,
2018
, “
Numerical Modelling of the Impact of Energy Distribution and Marangoni Surface Tension on Track Shape in Selective Laser Melting of Ceramic Material
,”
Addit. Manuf.
,
21
, pp.
713
723
.
9.
Saad
,
A.
,
Gandin
,
C.-A.
, and
Bellet
,
M.
,
2015
, “
Temperature-Based Energy Solver Coupled With Tabulated Thermodynamic Properties—Application to the Prediction of Macrosegregation in Multicomponent Alloys
,”
99
, pp.
221
231
.
10.
Zhang
,
Y.
,
Chen
,
Q.
,
Guillemot
,
G.
,
Gandin
,
C.-A.
, and
Bellet
,
M.
,
2018
, “
Numerical Modelling of Fluid and Solid Thermomechanics in Additive Manufacturing by Powder-Bed Fusion: Continuum and Level Set Formulation Applied to Track- and Part-Scale Simulations
,”
C. R. Mec.
,
346
(
11
), pp.
1055
1071
.
11.
Moges
,
T.
,
Ameta
,
G.
, and
Witherell
,
P.
,
2019
, “
A Review of Model Inaccuracy and Parameter Uncertainty in Laser Powder Bed Fusion Models and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
040801
.
12.
Zhang
,
Y.
,
Guillemot
,
G.
,
Bernacki
,
M.
, and
Bellet
,
M.
,
2018
, “
Macroscopic Thermal Finite Element Modelling of Additive Metal Manufacturing by Selective Laser Melting Process
,”
Comput. Meth. Appl. Mech.
,
331
, pp.
514
535
.
13.
Zhang
,
Y.
,
Shapiro
,
V.
, and
Witherell
,
P.
,
2020
, “
Scalable Thermal Simulation of Powder Bed Fusion
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Conference
,
Aug. 17–19
, V009T09A014, pp.
1
12
.
14.
Chiumenti
,
M.
,
Neiva
,
E.
,
Salsi
,
E.
,
Cervera
,
M.
,
Badia
,
S.
,
Moya
,
J.
,
Chen
,
Z.
,
Lee
,
C.
, and
Davies
,
C.
,
2017
, “
Numerical Modelling and Experimental Validation in Selective Laser Melting
,”
Addit. Manuf.
,
18
, pp.
171
185
.
15.
Zaeh
,
M. F.
, and
Branner
,
G.
,
2010
, “
Investigations on Residual Stresses and Deformations in Selective Laser Melting
,”
Prod. Eng.
,
4
(
1
), pp.
35
45
.
16.
Denlinger
,
E. R.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanical Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061007
.
17.
Krola
,
T. A.
,
Seidel
,
C.
,
Schilp
,
J.
,
Hofmann
,
M.
,
Gan
,
W.
, and
Zaeh
,
M. F.
,
2013
, “
Verification of Structural Simulation Results of Metal-Based Additive Manufacturing by Means of Neutron Diffraction
,”
Phys. Procedia
,
41
, pp.
849
857
.
18.
Peng
,
H.
,
Ghasri-Khouzani
,
M.
,
Gong
,
S.
,
Attardo
,
R.
,
Ostiguy
,
P.
,
Gatrell
,
B. A.
,
Budzinski
,
J.
, et al
,
2018
, “
Fast Prediction of Thermal Distortion in Metal Powder Bed Fusion Additive Manufacturing: Part 1, A Thermal Circuit Network Model
,”
Addit. Manuf.
,
22
, pp.
852
868
.
19.
Zhang
,
W.
,
Tong
,
M.
, and
Harrison
,
N. M.
,
2019
, “
Resolution, Energy and Time Dependency on Layer Scaling in Finite Element Modelling of Laser Beam Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
28
, pp.
610
620
.
20.
Bayat
,
M.
,
Klingaa
,
C. G.
,
Mohanty
,
S.
,
De Baere
,
D.
,
Thorborg
,
J.
,
Tiedje
,
N. S.
, and
Hattel
,
J. H.
,
2020
, “
Part-Scale Thermo-Mechanical Modelling of Distortions in Laser Powder Bed Fusion—Analysis of the Sequential Flash Heating Method With Experimental Validation
,”
Addit. Manuf.
,
36
, p.
101508
.
21.
Li
,
C.
,
Liu
,
Z. Y.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2018
, “
On the Simulation Scalability of Predicting Residual Stress and Distortion in Selective Laser Melting
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041013
.
22.
Shen
,
N.
, and
Chou
,
K.
,
2012
, “
Thermal Modeling of Electron Beam Additive Manufacturing Process: Powder Sintering Effects
,”
Proceedings of the ASME 2012 International Manufacturing Science and Engineering Conference
, MSEC2012,
Notre Dame, IN
,
June 4–8
.
23.
Sih
,
S. S.
, and
Barlow
,
J. W.
,
2004
, “
The Prediction of the Emissivity and Thermal Conductivity of Powder Beds
,”
Part. Sci. Technol.
,
22
(
4
), pp.
427
440
.
24.
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Reutzel
,
E. W.
,
2015
, “
Thermo-Mechanical Model Development and Validation of Directed Energy Deposition Additive Manufacturing of Ti-6Al-4V
,”
Addit. Manuf.
,
5
, pp.
9
19
.
25.
Fachinotti
,
V. D.
, and
Bellet
,
M.
,
2006
, “
Linear Tetrahedral Finite Elements for Thermal Shock Problems
,”
Int. J. Numer. Methods Heat Fluid Flow
,
16
(
5
), pp.
590
601
.
You do not currently have access to this content.