Abstract

In the present research, a digital twin of coaxial one-side resistance spot welding (COS-RSW) was established for the real-time prediction of transient temperature field. A three-dimensional (3D) model of COS-RSW joint was developed based on the in-house finite element (FE) code JWRIAN-SPOT. The experimental verified FE model was employed to generate the big data of temperature of COS-RSW process. Multiple dimension interpolation was applied to process database and output prediction. The FE model can predict the thermal cycle on COS-RSW joints under different parameter couples. The interpolation effect of individual welding parameters was discussed, and a power weight judgement for welding time was essential to ensure accuracy. With the support of big data, the digital twin can provide visualization prediction of COS-RSW within 10 s, whereas numerical modeling needs at least 1 h. The proposed application of digital twin has potential to improve the efficiency of process optimization in engineering.

References

1.
Tao
,
W.
,
Su
,
X.
,
Chen
,
Y.
, and
Tian
,
Z.
,
2019
, “
Joint Formation and Fracture Characteristics of Laser Welded CFRP/TC4 Joints
,”
J. Manuf. Process.
,
45
, pp.
1
8
.
2.
Staab
,
F.
, and
Balle
,
F.
,
2019
, “
Ultrasonic Torsion Welding of Ageing-Resistant Al/CFRP Joints: Properties, Microstructure and Joint Formation
,”
Ultrasonics
,
93
, pp.
139
144
.
3.
Nagatsuka
,
K.
,
Xiao
,
B.
,
Wu
,
L.
,
Natata
,
K.
,
Saeki
,
S.
,
Kitamoto
,
Y.
, and
Iwamoto
,
Y.
,
2018
, “
Dissimilar Materials Joining of Metal/Carbon Fibre Reinforced Plastic by Resistance Spot Welding
,”
Weld. Int.
,
32
(
7
), pp.
505
512
.
4.
Arkhurst
,
B. M.
,
Lee
,
M.
, and
Kim
,
J. H.
,
2018
, “
Effect of Resin Matrix on the Strength of an AZ31 Mg Alloy-CFRP Joint Made by the hot Metal Pressing Technique
,”
Compos. Struct.
,
201
, pp.
303
314
.
5.
Ogawa
,
Y.
,
Akebono
,
H.
,
Tanaka
,
K.
, and
Sugeta
,
A.
,
2019
, “
Effect of Welding Time on Fatigue Properties of Friction Stir Spot Welds of Al to Carbon Fibre-Reinforced Plastic
,”
Sci. Technol. Weld. Joining
,
24
(
3
), pp.
235
242
.
6.
Pereira
,
D.
,
Oliveira
,
J. P.
,
Santos
,
T. G.
,
Miranda
,
R. M.
,
Lourenço
,
F.
,
Gumpinger
,
J.
, and
Bellarosa
,
R.
,
2019
, “
Aluminium to Carbon Fibre Reinforced Polymer Tubes Joints Produced by Magnetic Pulse Welding
,”
Compos. Struct.
,
230
, p.
111512
.
7.
Jiao
,
J. K.
,
Wang
,
Q.
,
Wang
,
F. Y.
,
Zan
,
S. P.
, and
Zhang
,
W. W.
,
2017
, “
Numerical and Experimental Investigation on Joining CFRTP and Stainless Steel Using Fiber Lasers
,”
J. Mater. Process. Technol.
,
240
, pp.
362
369
.
8.
Cui
,
J.
,
Li
,
Y.
,
Liu
,
Q.
,
Zhang
,
X.
,
Xu
,
Z.
, and
Li
,
G.
,
2019
, “
Joining of Tubular Carbon Fiber-Reinforced Plastic/Aluminum by Magnetic Pulse Welding
,”
J. Mater. Process. Technol.
,
264
, pp.
273
282
.
9.
James
,
S.
, and
De La Luz
,
L.
,
2019
, “
Finite Element Analysis and Simulation Study of CFRP/Ti Stacks Using Ultrasonic Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9
), pp.
4421
4431
.
10.
Das
,
A.
,
Bang
,
H. S.
, and
Bang
,
H. S.
,
2018
, “
Numerical Modelling in Friction Lap Joining of Aluminium Alloy and Carbon-Fiber-Reinforced-Plastic Sheets
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
369
, p.
012032
.
11.
Rasheed
,
A.
,
San
,
O.
, and
Kvamsdal
,
T.
,
2020
, “
Digital Twin: Values, Challenges and Enablers From a Modeling Perspective
,”
IEEE Access
,
8
, pp.
21980
22012
.
12.
Grieves
,
M.
,
2016
, “
Origins of the Digital Twin Concept
,” https://www.researchgate.net/publication/307509727_Origins_of_the_Digital_Twin_Concept
13.
Shafto
,
M.
,
Conroy
,
M.
,
Doyle
,
R.
,
Glaessgen
,
E.
,
Kemp
,
C.
,
LeMoigne
,
J.
, and
Wang
,
L.
,
2010
,
NASA Technology Roadmap: DRAFT Modeling, Simulation, Information Technology & Processing Roadmap Technology Area 11
, Nov.
14.
Kurfess
,
T. R.
,
Saldana
,
C.
,
Saleeby
,
K.
, and
Dezfouli
,
M. P.
,
2020
, “
A Review of Modern Communication Technologies for Digital Manufacturing Processes in Industry 4.0
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110815
.
15.
Gockel
,
B.
,
Tudor
,
A.
,
Brandyberry
,
M.
,
Penmetsa
,
R.
, and
Tuegel
,
E.
,
2012
, “
Challenges With Structural Life Forecasting Using Realistic Mission Profiles
,”
Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA
,
Honolulu, HI
,
Apr. 23–26
, p.
1813
.
16.
Reifsnider
,
K.
, and
Majumdar
,
P.
,
2013
, “
Multiphysics Stimulated Simulation Digital Twin Methods for Fleet Management
,”
Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Boston, MA
,
Apr. 8–11
, p.
1578
.
17.
Kannan
,
K.
, and
Arunachalam
,
N.
,
2019
, “
A Digital Twin for Grinding Wheel: An Information Sharing Platform for Sustainable Grinding Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021015
.
18.
Fujikubo
,
M.
,
2021
, “
R&D of Digital Twin for Ship Structure
,”
J. Jpn. Weld. Soc.
,
90
(
1
), pp.
36
43
.
19.
G.E. Digital
,
2016
, “
Minds + Machines: Meet a Digital Twin
,” https://www.youtube.com/watch?v=2dCz3oL2rTw
20.
Ren
,
S.
,
Ma
,
Y.
,
Saeki
,
S.
,
Iwamoto
,
Y.
, and
Ma
,
N.
,
2020
, “
Numerical Analysis on Coaxial One-Side Resistance Spot Welding of Al5052 and CFRP Dissimilar Materials
,”
Mater. Des.
,
188
, p.
108442
.
21.
Kosky
,
P.
,
Balmer
,
R.
,
Keat
,
W.
, and
Wise
,
G.
,
2013
,
Exploring Engineering
,
Academic Press
,
Boston, MA
.
You do not currently have access to this content.